Anomalies such as leakage and bursts in water pipelines have severe consequences for the environment and the economy. To ensure the reliability of water pipelines, they must be monitored effectively. Wireless Sensor Networks (WSNs) have emerged as an effective technology for monitoring critical infrastructure such as water, oil and gas pipelines. In this paper, we present a scalable design and simulation of a water pipeline leakage monitoring system using Radio Frequency IDentification (RFID) and WSN technology. The proposed design targets long-distance aboveground water pipelines that have special considerations for maintenance, energy consumption and cost. The design is based on deploying a group of mobile wireless sensor nodes inside the pipeline and allowing them to work cooperatively according to a prescheduled order. Under this mechanism, only one node is active at a time, while the other nodes are sleeping. The node whose turn is next wakes up according to one of three wakeup techniques: location-based, time-based and interrupt-driven. In this paper, mathematical models are derived for each technique to estimate the corresponding energy consumption and memory size requirements. The proposed equations are analyzed and the results are validated using simulation.
AbstractIntroduction:Chest pain is one of the most common reasons for 999 calls and transfers to the emergency department (ED). In these patients, acute myocardial infarction (AMI) is often the diagnosis that clinicians are seeking to exclude. However, only a minority of those patients have AMI, causing a substantial financial burden to health services. Cardiac troponin (cTn) is the reference standard biomarker for the diagnosis of AMI. Several commercially available point-of-care (POC) cTn assays are portable and could feasibly be used in an ambulance. The aim of this paper is to systematically review existing evidence for the use of POC cTn assays in the prehospital setting to rule out AMI.Methods:A systematic search was conducted on EMBASE, MEDLINE, and CINAHL Plus databases, reference lists, and relevant grey literature, including combinations of the relevant terms. Papers published in English language since the year 2000 were eligible for inclusion. A narrative synthesis of the evidence was then undertaken.Results:The initial search and cross-referencing revealed a total of 350 papers, of which 243 were excluded. Seven papers were included in the systematic literature review.Conclusion:Current evidence does not support the use of POC troponin assays to exclude AMI due to issues with diagnostic accuracy and insufficient high-quality evidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.