Abstract-In the molecular era the management of cancer is no more a plan based on simple guidelines. Clinical findings, tumor characteristics, and molecular markers are integrated to identify different risk categories, based on which treatment is planned for each individual case. This paper aims at developing a fuzzy decision support system (DSS) to guide the doctors for the risk stratification of breast cancer, which is expected to have a great impact on treatment decision and to minimize individual variations in selecting the optimal treatment for a particular case. The developed system was based on clinical practice of Oncology Center Mansoura University (OCMU) This system has six input variables (Her2, hormone receptors, age, tumor grade, tumor size, and lymph node) and one output variable (risk status). The output variable is a value from 1 to 4; representing low risk status, intermediate risk status and high risk status. This system uses Mamdani inference method and simulation applied in MATLAB R2009b fuzzy logic toolbox.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.