Assessment of human locomotion using wearable sensors is an efficient way of getting useful information about human health status, and determining human locomotion abnormalities. Wearable sensors do not only provide the opportunity to assess the behavior of patients as it happens in their daily life activities, but also provide quantitative, meaningful feedback data of patients to their therapists. This can pinpoint the cause of problems and help in maximizing their recovery rates. The popularity of using wearable sensors has received attention from a number of researchers from both the academic and industrial fields in the past few years. The different types of wearable sensors have given birth to the realization of a standard measurement model that can support different types of applications. Wireless body area networks (WBANs) are starting to replace traditional healthcare systems by enabling long-term monitoring of patients and tele-rehabilitation, especially those who suffer from chronic diseases. This paper investigates using wearable accelerometers and surface electromyography (EMG) in human locomotion monitoring for tele-rehabilitation. It proposes and investigates new positions for the proposed sensors, and compares the measured signals to similar techniques proposed in the literature. Realistic measurements show that the proposed positions of surface EMG sensors (on the forearm muscles) provide more reliable results in the classification of motion abnormality as compared to the sensor positions proposed in the literature (biceps muscles). Seven statistical features were extracted from accelerometer signals, and four time domain (TD) features are extracted from EMG signals. These features are used to construct six machine learning classifiers for automatic classification of Parkinson’s tremor. These models include; decision tree (DT), linear discriminant analysis analysis (LDA), k-nearest-neighbor (kNN), support vector machine (SVM), boosted tree and bagged tree classifiers. The performance of the applied classifiers is analyzed using accuracy, confusion matrix, and area under ROC (AUC) curve. The results are also compared to corresponding findings in the literature. The experimental results show that the highest classification accuracy is achieved when using the proposed measurement set and bagged tree classifier with a value of 99.6%.
Biomedical applications of body area networks (BANs) are evolving, where taking periodic medical readings of patients via means wireless technologies at home or in the office will aid physicians to periodically supervise the patient's medical status without having to see the patient. Thus, one important objective of BANs is to provide the doctor with the medical readings that can be collected electronically without being in close proximity to the patient. This is done through the measurement of the patient's physiological signals via means of wearable sensors. This paper investigates wireless BAN cooperation via actual measurements of human movement kinematics and electrocardiogram (ECG), which are believed to provide patients with easy healthcare for continuous health-monitoring. The collected information will be processed using specially designed software, which in turn will enable the patient to send a full medical chart to the physician's electronic device. In this way, physicians will have the ability to monitor their patients more efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.