Ultrasound-based sensing of muscle deformation, known as sonomyography, has shown promise for accurately classifying the intended hand grasps of individuals with upper limb loss in offline settings. Building upon this previous work, we present the first demonstration of real-time prosthetic hand control using sonomyography to perform functional tasks. An individual with congenital bilateral limb absence was fitted with sockets containing a low-profile ultrasound transducer placed over forearm muscle tissue in the residual limbs. A classifier was trained using linear discriminant analysis to recognize ultrasound images of muscle contractions for three discrete hand configurations (rest, tripod grasp, index finger point) under a variety of arm positions designed to cover the reachable workspace. A prosthetic hand mounted to the socket was then controlled using this classifier. Using this real-time sonomyographic control, the participant was able to complete three functional tasks that required selecting different hand grasps in order to grasp and move one-inch wooden blocks over a broad range of arm positions. Additionally, these tests were successfully repeated without retraining the classifier across 3 hours of prosthesis use and following simulated donning and doffing of the socket. This study supports the feasibility of using sonomyography to control upper limb prostheses in real-world applications.
Objective: Sonomyography, or ultrasound-based sensing of muscle deformation, is an emerging modality for upper limb prosthesis control. Although prior studies have shown that individuals with upper limb loss can achieve successful motion classification with sonomyography, it is important to better understand the time-course over which proficiency develops. In this study, we characterized user performance during their initial and subsequent exposures to sonomyography. Method: Ultrasound images corresponding to a series of hand gestures were collected from individuals with transradial limb loss under three scenarios: during their initial exposure to sonomyography (Experiment 1), during a subsequent exposure to sonomyography where they were provided biofeedback as part of a training protocol (Experiment 2), and during testing sessions held on different days (Experiment 3). User performance was characterized by offline classification accuracy, as well as metrics describing the consistency and separability of the sonomyography signal patterns in feature space. Results: Classification accuracy was high during initial exposure to sonomyography (96.2 ± 5.9%) and did not systematically change with the provision of biofeedback or on different days. Despite this stable classification performance, some of the feature space metrics changed. Conclusions: User performance was strong upon their initial exposure to sonomyography and did not improve with subsequent exposure. Clinical Impact: Prosthetists may be able to quickly assess if a patient will be successful with sonomyography without submitting them to an extensive training protocol, leading to earlier socket fabrication and delivery.
Controlling multi-articulated prosthetic hands with surface electromyography can be challenging for users. Sonomyography, or ultrasound-based sensing of muscle deformation, avoids some of the problems of electromyography and enables classification of multiple motion patterns in individuals with upper limb loss. Because sonomyography has been previously studied only in individuals with transradial limb loss, the purpose of this study was to assess the feasibility of an individual with transhumeral limb loss using this modality for motion classification. A secondary aim was to compare motion classification performance between electromyography and sonomyography. A single individual with transhumeral limb loss created two datasets containing 11 motions each (individual flexion of each finger, thumb abduction, power grasp, key grasp, tripod, point, pinch, wrist pronation). Electromyography or sonomyography signals associated with every motion were acquired and cross-validation accuracy was computed for each dataset. While all motions were usually predicted successfully with both electromyography and sonomyography, the cross-validation accuracies were typically higher for sonomyography. Although this was an exploratory study, the results suggest that controlling an upper limb prosthesis using sonomyography may be feasible for individuals with transhumeral limb loss.
Background: Although surface electromyography is commonly used as a sensing strategy for upper limb prostheses, it remains difficult to reliably decode the recorded signals for controlling multi-articulated hands. Sonomyography, or ultrasound-based sensing of muscle deformation, overcomes some of these issues and allows individuals with upper limb loss to reliably perform multiple motion patterns. The purposes of this study were to determine 1) the effect of training on classification performance with sonomyographic control and 2) the effect of training on the underlying muscle deformation patterns.Methods: A series of motion pattern datasets were collected from five individuals with transradial limb loss. Each dataset contained five ultrasound images corresponding each of the following five motions: power grasp, wrist pronation, key grasp, tripod, point. Participants initially performed the motions for the datasets without receiving feedback on their performance (baseline phase), then with visual and verbal feedback (feedback phase), and finally again without feedback (retention phase). Cross-validation accuracy and metrics describing the consistency and separability of the muscle deformation patters were computed for each dataset. Changes in classification performance over the course of the study were assessed using linear mixed models. Associations between classification performance and the consistency and separability metrics were evaluated using Pearson correlations.Results: The average cross-validation accuracy for each phase was 92% or greater and there was no significant change in cross-validation accuracy throughout training. Misclassifications of one motion as another did not persist systematically across datasets. Few of the correlations were significant, although many were moderate or greater in strength and showed a positive association between accuracy and improved consistency and separability metrics.Conclusions: Participants were able to achieve high classification rates upon their initial exposure to sonomyography and training did not affect their performance. Thus, motion classification using sonomyography may be highly intuitive and is unlikely to require a structured training protocol to gain proficiency.
Objective: Sonomyography, or ultrasound-based sensing of muscle deformation, is an emerging modality for upper limb prosthesis control. Although prior studies have shown that individuals with upper limb loss can achieve successful motion classification with sonomyography, it is important to better understand the time-course over which proficiency develops. In this study, we characterized user performance during their initial and subsequent exposures to sonomyography. Method: Ultrasound images corresponding to a series of hand gestures were collected from individuals with transradial limb loss under three scenarios: during their initial exposure to sonomyography (Experiment 1), during a subsequent exposure to sonomyography where they were provided biofeedback as part of a training protocol (Experiment 2), and during testing sessions held on different days (Experiment 3). User performance was characterized by offline classification accuracy, as well as metrics describing the consistency and separability of the sonomyography signal patterns in feature space. Results: Classification accuracy was high during initial exposure to sonomyography (96.2 ± 5.9%) and did not systematically change with the provision of biofeedback or on different days. Despite this stable classification performance, some of the feature space metrics changed. Conclusions: User performance was strong upon their initial exposure to sonomyography and did not improve with subsequent exposure. Clinical Impact: Prosthetists may be able to quickly assess if a patient will be successful with sonomyography without submitting them to an extensive training protocol, leading to earlier socket fabrication and delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.