Recently, a variety of approaches has been enriching the field of Remote Sensing (RS) image processing and analysis. Unfortunately, existing methods remain limited faced to the rich spatio-spectral content of today's large datasets. It would seem intriguing to resort to Deep Learning (DL) based approaches at this stage with regards to their ability to offer accurate semantic interpretation of the data. However, the specificity introduced by the coexistence of spectral and spatial content in the RS datasets widens the scope of the challenges presented to adapt DL methods to these contexts. Therefore, the aim of this paper is firstly to explore the performance of DL architectures for the RS hyperspectral dataset classification and secondly to introduce a new three-dimensional DL approach that enables a joint spectral and spatial information process. A set of three-dimensional schemes is proposed and evaluated. Experimental results based on well known hyperspectral datasets demonstrate that the proposed method is able to achieve a better classification rate than state of the art methods with lower computational costs.
The performances of medical image processing techniques, in particular CT scans, are usually affected by poor contrast quality introduced by some medical imaging devices. This suggests the use of contrast enhancement methods as a solution to adjust the intensity distribution of the dark image. In this paper, an advanced adaptive and simple algorithm for dark medical image enhancement is proposed. This approach is principally based on adaptive gamma correction using discrete wavelet transform with singular-value decomposition (DWT-SVD). In a first step, the technique decomposes the input medical image into four frequency sub-bands by using DWT and then estimates the singular-value matrix of the low-low (LL) sub-band image. In a second step, an enhanced LL component is generated using an adequate correction factor and inverse singular value decomposition (SVD). In a third step, for an additional improvement of LL component, obtained LL sub-band image from SVD enhancement stage is classified into two main classes (low contrast and moderate contrast classes) based on their statistical information and therefore processed using an adaptive dynamic gamma correction function. In fact, an adaptive gamma correction factor is calculated for each image according to its class. Finally, the obtained LL sub-band image undergoes inverse DWT together with the unprocessed low-high (LH), high-low (HL), and high-high (HH) sub-bands for enhanced image generation. Different types of non-contrast CT medical images are considered for performance evaluation of the proposed contrast enhancement algorithm based on adaptive gamma correction using DWT-SVD (DWT-SVD-AGC). Results show that our proposed algorithm performs better than other state-of-the-art techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.