An iron(II) pyridyl-benzohydrazonate-based complex decorated with long alkyl chains is reported as a rare spin-crossover compound displaying a wide thermal hysteresis spanning room temperature. On heating, this compound exhibits a spin transition between a LS ground state and an ordered HS-LS phase with symmetry breaking from monoclinic P2/n into orthorhombic P222 space groups. During cooling, the compound first transits into a magnetically distinguishable HS-LS phase with monoclinic P2 symmetry before returning into the LS phase. Interconversion between the two distinct HS-LS phases is the result of subtle structural changes in the alkyl chains and produces a second minor thermal hysteresis that superposes to the large one. This unprecedented result shows that the combination of a conventional cooperative spin transition and ligand-driven magnetic changes can promote magnetic tristability at room temperature.
REF (Hevb1) and SRPP (Hevb3) are two major components of Hevea brasiliensis latex, well known for their allergenic properties. They are obviously taking part in the biosynthesis of natural rubber, but their exact function is still unclear. They could be involved in defense/stress mechanisms after tapping or directly acting on the isoprenoid biosynthetic pathway. The structure of these two proteins is still not described. In this work, it was discovered that REF has amyloid properties, contrary to SRPP. We investigated their structure by CD, TEM, ATR-FTIR and WAXS and neatly showed the presence of β-sheet organized aggregates for REF, whereas SRPP mainly fold as a helical protein. Both proteins are highly hydrophobic but differ in their interaction with lipid monolayers used to mimic the monomembrane surrounding the rubber particles. Ellipsometry experiments showed that REF seems to penetrate deeply into the monolayer and SRPP only binds to the lipid surface. These results could therefore clarify the role of these two paralogous proteins in latex production, either in the coagulation of natural rubber or in stress-related responses. To our knowledge, this is the first report of an amyloid formed from a plant protein. This suggests also the presence of functional amyloid in the plant kingdom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.