The COVID-19 pandemic has triggered panic-buying behavior around the globe. As a result, many essential supplies were consistently out-of-stock at common point-of-sale locations. Even though most retailers were aware of this problem, they were caught off guard and are still lacking the technical capabilities to address this issue. The primary objective of this paper is to develop a framework that can systematically alleviate this issue by leveraging AI models and techniques. We exploit both internal and external data sources and show that using external data enhances the predictability and interpretability of our model. Our data-driven framework can help retailers detect demand anomalies as they occur, allowing them to react strategically. We collaborate with a large retailer and apply our models to three categories of products using a dataset with more than 15 million observations. We first show that our proposed anomaly detection model can successfully detect anomalies related to panic buying. We then present a prescriptive analytics simulation tool that can help retailers improve essential product distribution in uncertain times. Using data from the March 2020 panic-buying wave, we show that our prescriptive tool can help retailers increase access to essential products by 56.74%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.