Some viruses are known to be associated with increased apoptosis. Apoptotic cell death triggered by these viruses has a complex role in host antiviral immunity, and might facilitate the viral clearance or act as a mechanism for virus-induced tissue injury and disease progression. The induction of apoptosis is a hallmark of SARS-CoV-2 infection. Accumulating evidence suggests that there is a direct relationship between apoptosis rate and COVID-19 pathogenicity/severity. Targeting virus-induced apoptosis could be a promising strategy in the treatment of SARS-CoV-2 virus infection.
Point-of-care (POC) or near-patient testing allows clinicians to accurately achieve real-time diagnostic results performed at or near to the patient site. The outlook of POC devices is to provide quicker analyses that can lead to well-informed clinical decisions and hence improve the health of patients at the point-of-need. Microfluidics plays an important role in the development of POC devices. However, requirements of handling expertise, pumping systems and complex fluidic controls make the technology unaffordable to the current healthcare systems in the world. In recent years, capillary-driven flow microfluidics has emerged as an attractive microfluidic-based technology to overcome these limitations by offering robust, cost-effective and simple-to-operate devices. The internal wall of the microchannels can be pre-coated with reagents, and by merely dipping the device into the patient sample, the sample can be loaded into the microchannel driven by capillary forces and can be detected via handheld or smartphone-based detectors. The capabilities of capillary-driven flow devices have not been fully exploited in developing POC diagnostics, especially for antimicrobial resistance studies in clinical settings. The purpose of this review is to open up this field of microfluidics to the ever-expanding microfluidic-based scientific community.
Infectious diseases alone are estimated to result in approximately 40% of the 50 million total annual deaths globally. The importance of basic research in the control of emerging and re-emerging diseases cannot be overemphasized. However, new nanotechnology-based methodologies exploiting unique surface-located glycoproteins or their patterns can be exploited to detect pathogens at the point of use or on-site with high specificity and sensitivity. These technologies will, therefore, affect our ability in the future to more accurately assess risk. The critical challenge is making these new methodologies cost-effective, as well as simple to use, for the diagnostics industry and public healthcare providers. Miniaturization of biochemical assays in lab-on-a-chip devices has emerged as a promising tool. Miniaturization has the potential to shape modern biotechnology and how point-of-care testing of infectious diseases will be performed by developing smart microdevices that require minute amounts of sample and reagents and are cost-effective, robust, and sensitive and specific. The current review provides a short overview of some of the futuristic approaches using simple molecular interactions between glycoproteins and glycoprotein-binding molecules for the efficient and rapid detection of various pathogens at the point of use, advancing the emerging field of glyconanodiagnostics.
The spectrum of emerging new diseases as well as re-emerging old diseases is broadening as infectious agents evolve, adapt, and spread at enormous speeds in response to changing ecosystems. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recent phenomenon and may take a while to understand its transmission routes from less traveled territories, ranging from fomite exposure routes to wastewater transmission. The critical challenge is how to negotiate with such catastrophic pandemics in high-income countries (HICs ~20% of the global population) and low-and middle-income countries (LMICs ~ 80% of the global population) with a total global population size of approximately eight billion, where practical mass testing and tracing is only a remote possibility, particularly in low-and middle-income countries (LMICs). Keeping in mind the population distribution disparities of high-income countries (HICs) and LMICs and urbanisation trends over recent years, traditional wastewater-based surveillance such as that used to combat polio may help in addressing this challenge. The COVID-19 era differs from any previous pandemics or global health challenges in the sense that there is a great deal of curiosity within the global community to find out everything about this virus, ranging from diagnostics, potential vaccines/therapeutics, and possible routes of transmission. In this regard, the fact that the gut is the common niche for both poliovirus and SARS-CoV-2, and due to the shedding of the virus through faecal material into sewerage systems, the need for long-term wastewater surveillance and developing early warning systems for better preparedness at local and global levels is increasingly apparent. This paper aims to provide an insight into the ongoing COVID-19 crisis, how it can be managed, and what measures are required to deal with a current global international public health concern. Additionally, it shed light on the importance of using wastewater surveillance strategy as an early warning practical tool suitable for massive passive screening, as well as the urgent need for microfluidic technology as a rapid and cost-effective approach tracking SARS-CoV-2 in wastewater.
Until now, there is no current vaccine or treatment against SARS-CoV-2. There are previous successful RNAi studies performed on SARS-CoV. Therefore, similar line of investigation against SARS-CoV-2 could be successful. Keywords SARS-CoV. SARS-CoV-2. RNAi. Leader sequence RNA interference (RNAi) is a mechanism through which small interfering RNA (siRNA) triggers post-transcriptional gene silencing. RNAi has shown promising results in the protection from viral invasion, since it inhibits the expression of viral antigens and controls the replication and transcription of the viral genome (Wu and Chan 2006). Recent comparative genomic analyses of SARS-CoV-2 and SARS-CoV have concluded that the genomic sequences of SARS-CoV and SARS-CoV-2 have extremely high homology at the nucleotide level. Most of SARS-CoV-2 proteins are extremely high homologous (95-100%) to the proteins of SARS-CoV virus, showing the evolutionary similarity between SARS-CoV and SARS-CoV-2 (Xu et al. 2020). At the whole-genome level, the sequences of SARS-CoV-2 share approximately 79% sequence identity to SARS-CoV (Zhou et al. 2020). Previous studies reported that RNAi has shown promising results against SARS-CoV appeared in 2003 (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.