Due to the robustness of sliding mode controllers (SMCs), especially against model uncertainties and disturbances, and also its ability in controlling nonlinear and multi-input multi-output (MIMO) systems; a DC motor sliding mode position controller design using fuzzy logic (FL) and proportional-integral-derivative (PID) techniques, is proposed in this paper. Also, due to system uncertainties that can lead to chattering phenomena in control law which can excite non-modeled dynamics and may damage the process, different approaches, like intelligent techniques, are used to minimize these effects. In this paper, the FL will be considered in the design of SMC. Also, a PID will be used in the outer loop in the control law then the gains of the sliding term and PID term are tuned on-line by a fuzzy system, so the chattering is avoided and response of system is improved against external load here. Presented simulation results confirm the above proposal and demonstrate the performance improvement to the example of DC motor.
In this paper, a new soft‐fusion approach for multiple‐receiver wireless communication systems is proposed. In the proposed approach, each individual receiver provides the central receiver with a confidence level rather than a binary decision. The confidence levels associated with the local receiver are modeled by means of soft‐membership functions. The proposed approach can be applied to wireless digital communication systems, such as amplitude shift keying, frequency shift keying, phase shift keying, multi‐carrier code division multiple access, and multiple inputs multiple outputs sensor networks. The performance of the proposed approach is evaluated and compared to the performance of the optimal diversity, majority voting, optimal partial decision, and selection diversity in case of binary noncoherent frequency shift keying on a Rayleigh faded additive white Gaussian noise channel. It is shown that the proposed approach achieves considerable performance improvement over optimal partial decision, majority voting, and selection diversity. It is also shown that the proposed approach achieves a performance comparable to the optimal diversity scheme.
In this paper, we aim to investigate the delay-power tradeoff problem which is attracting widespread interest due to its importance in wireless technology. This research has two main objectives. First, to assess the effect of different system parameters on the performance metrics. Second, to provide a solution for this optimization problem. A two-state, slow-fading channel is categorized into good and bad channel states. An adaptive transmission and random data arrivals are considered in our model. Each channel category has its own Markov chain, which is used in modeling the system. A joint Buffer-Aware and Channel-Aware (BACA) problem was introduced. In addition, an enhanced iterative algorithm was introduced for obtaining a sub-optimal delay-power tradeoff. The results show that the tradeoff curve is piecewise linear, convex and decreasing. Furthermore, a channel-aware system was investigated to provide analysis of the effect of system parameters on the delay and power. The obtained results show that the dominant factors that control the system performance are based on the arrival rate and the channel goodness factor. Moreover, a simplified field programable gate array (FPGA) hardware implementation for the channel aware system scheduler is presented. The implementation results show that the consumed power for the proposed scheduler is 98.5 mW and the maximum processing clock speed is 190 MHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.