Using the shared-private paradigm and adversarial training can significantly improve the performance of multi-domain text classification (MDTC) models. However, there are two issues for the existing methods: First, instances from the multiple domains are not sufficient for domain-invariant feature extraction. Second, aligning on the marginal distributions may lead to a fatal mismatch. In this paper, we propose mixup regularized adversarial networks (MRANs) to address these two issues. More specifically, the domain and category mixup regularizations are introduced to enrich the intrinsic features in the shared latent space and enforce consistent predictions in-between training instances such that the learned features can be more domain-invariant and discriminative. We conduct experiments on two benchmarks: The Amazon review dataset and the FDU-MTL dataset. Our approach on these two datasets yields average accuracies of 87.64% and 89.0% respectively, outperforming all relevant baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.