Rocks of Ediacaran age (~635–541 Ma) contain the oldest fossils of large, complex organisms and their behaviors. These fossils document developmental and ecological innovations, and suggest that extinctions helped to shape the trajectory of early animal evolution. Conventional methods divide Ediacaran macrofossil localities into taxonomically distinct clusters, which may represent evolutionary, environmental, or preservational variation. Here, we investigate these possibilities with network analysis of body and trace fossil occurrences. By partitioning multipartite networks of taxa, paleoenvironments, and geologic formations into community units, we distinguish between biostratigraphic zones and paleoenvironmentally restricted biotopes, and provide empirically robust and statistically significant evidence for a global, cosmopolitan assemblage unique to terminal Ediacaran strata. The assemblage is taxonomically depauperate but includes fossils of recognizable eumetazoans, which lived between two episodes of biotic turnover. These turnover events were the first major extinctions of complex life and paved the way for the Cambrian radiation of animals.
Mathematical relationships between unit-cell parameters and chemical composition were developed for selected mineral phases observed with the CheMin X-ray diffractometer onboard the Curiosity rover in Gale crater. This study presents algorithms for estimating the chemical composition of phases based solely on X-ray diffraction data. The mineral systems include plagioclase, alkali feldspar, Mg-Fe-Ca C2/c clinopyroxene, Mg-Fe-Ca P2 1 /c clinopyroxene, Mg-Fe-Ca orthopyroxene, Mg-Fe olivine, magnetite, and other selected spinel oxides, and alunite-jarosite. These methods assume compositions of Na-Ca for plagioclase, K-Na for alkali feldspar, Mg-Fe-Ca for pyroxene, and Mg-Fe for olivine; however, some other minor elements may occur and their impact on measured unit-cell parameters is discussed. These crystal-chemical algorithms can be applied to material of any origin, whether that origin is Earth, Mars, an extraterrestrial body, or a laboratory.
SignificanceThe geologic record provides evidence of repeated diversification events and mass extinctions, which entailed benchmark changes in biodiversity and ecology. For insights into these events, we explore the fossil record of marine animal communities using a network-based approach to quantifying ecological change over time. The major radiations and mass extinctions of the Phanerozoic Eon resulted in the biggest ecological changes, as they involved the rise and decline of interrelated communities in relative dominance. Our analyses provide support for an ecological severity ranking of mass extinctions and illuminate the long-term consequences of the Ordovician radiation and Devonian mass depletion of biodiversity. Our work highlights the potential for irreversible ecosystem changes with species losses, both previously documented and predicted in the future.
A fundamental goal of mineralogy and petrology is the deep understanding of mineral phase relationships and the consequent spatial and temporal patterns of mineral coexistence in rocks, ore bodies, sediments, meteorites, and other natural polycrystalline materials. The multi-dimensional chemical complexity of such mineral assemblages has traditionally led to experimental and theoretical consideration of 2-, 3-, or n-component systems that represent simplified approximations of natural systems. Network analysis provides a dynamic, quantitative, and predictive visualization framework for employing "big data" to explore complex and otherwise hidden higher-dimensional patterns of diversity and distribution in such mineral systems. We introduce and explore applications of mineral network analysis, in which mineral species are represented by nodes, while coexistence of minerals is indicated by lines between nodes. This approach provides a dynamic visualization platform for higher-dimensional analysis of phase relationships, because topologies of equilibrium phase assemblages and pathways of mineral reaction series are embedded within the networks. Mineral networks also facilitate quantitative comparison of lithologies from different planets and moons, the analysis of coexistence patterns simultaneously among hundreds of mineral species and their localities, the exploration of varied paragenetic modes of mineral groups, and investigation of changing patterns of mineral occurrence through deep time. Mineral network analysis, furthermore, represents an effective visual approach to teaching and learning in mineralogy and petrology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.