Recently, drive-by bridge inspection has attracted increasing attention in the bridge monitoring field. A number of studies have given confidence in the feasibility of the approach to detect, quantify, and localize damages. However, the speed of the inspection truck represents a major obstacle to the success of this method. High speeds are essential to induce a significant amount of kinetic energy to stimulate the bridge modes of vibration. On the other hand, low speeds are necessary to collect more data and to attenuate the vibration of the vehicle due to the roughness of the road and, hence, magnify the bridge influence on the vehicle responses. This article introduces Frequency Independent Underdamped Pinning Stochastic Resonance (FI-UPSR) as a new technique, which possesses the ability to extract bridge dynamic properties from the responses of a vehicle that passes over the bridge at high speed. Stochastic Resonance (SR) is a phenomenon where feeble information such as weak signals can be amplified through the assistance of background noise. In this study, bridge vibrations that are present in the vehicle responses when it passes over the bridge are the feeble information while the noise counts for the effect of the road roughness on the vehicle vibration. UPSR is one of the SR models that has been chosen in this study for its suitability to extract the bridge vibration. The main contributions of this article are: (1) introducing a Frequency Independent-Stochastic Resonance model known as the FI-UPSR and (2) implementing this model to extract the bridge vibration from the responses of a fast passing vehicle.
Smartphone MEMS (Micro Electrical Mechanical System) accelerometers have relatively low sensitivity and high output noise density. Therefore, it cannot be directly used to track feeble vibrations such as structural vibrations. This article proposes an effective increase in the sensitivity of the smartphone accelerometer utilizing the stochastic resonance (SR) phenomenon. SR is an approach where, counter-intuitively, feeble signals are amplified rather than overwhelmed by the addition of noise. This study introduces the 2D-frequency independent underdamped pinning stochastic resonance (2D-FI-UPSR) technique, which is a customized SR filter that enables identifying the frequencies of weak signals. To validate the feasibility of the proposed SR filter, an iPhone device is used to collect bridge acceleration data during normal traffic operation and the proposed 2D-FI-UPSR filter is used to process these data. The first four fundamental bridge frequencies are successfully identified from the iPhone data. In parallel to the iPhone, a highly sensitive wireless sensing network consists of 15 accelerometers (Silicon Designs accelerometers SDI-2012) is installed to validate the accuracy of the extracted frequencies. The measurement fidelity of the iPhone device is shown to be consistent with the wireless sensing network data with approximately 1% error in the first three bridge frequencies and 3% error in the fourth frequency.
Arch anatomy often goes undocumented on preoperative imaging, yet children undergoing extended end-to-end repair with bovine arch anatomy are at a significantly increased risk of recoarctation. This may be due to a reduced clampable distance to facilitate repair. These results should be considered in the preoperative assessment, parental counseling, and surgical approach for children with discrete aortic coarctation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.