The Abu Gharadig Basin is regarded as one of the most essential in Egypt, serving as the country’s second most important reservoir for hydrocarbon production. Our present study is focused on the investigation of geothermal resources in the Abu Gharadig Basin. Using airborne magnetic and gravity surveys, as well as temperature well records, we can identify possible geothermal sources in this region. Power spectral analysis was used on the airborne magnetic measurements to compute the Curie Point Depths (CPDs) and display the temperature gradients and heat flows regime in the study area, while on the gravity data, 3-D density inversion was used to identify the basement surface. Real data from bottom-hole temperature (BHT) logs and geological data (structural and stratigraphic data from prior studies) were used to cross-validate the geophysical maps and to ascertain the stratigraphy and structural setting beneath the study location. The depth of the basement rock, according to the studies, ranges from 4.5 to 7 km, and the CPDs run from 17 to 22 km. Furthermore, the estimated temperature gradients vary from 25 to 34 degrees Celsius per kilometer, whereas the heat flows vary from 52 to 86 mW/m2. Generally, there is a correlation between shallow curie depths, uplifts on basement rocks, and sites of high heat flow, indicating that basement rocks are primarily accountable for the geothermal potential of the basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.