Concrete is indeed one of the most consumed construction materials all over the world. In spite of that, its behavior towards absolute volume change is still faced with uncertainties in terms of chemical and physical reactions at different stages of its life span, starting from the early time of hydration process, which depends on various factors including water/cement ratio, concrete proportioning and surrounding environmental conditions. This interest in understanding and defining the different types of shrinkage and the factors impacting each one is driven by the importance of these volumetric variations in determining the concrete permeability, which ultimately controls its durability. Many studies have shown that the total prevention of concrete from undergoing shrinkage is impractical. However, different practices have been used to control various types of shrinkage in concrete and limit its magnitude. This paper provides a detailed review of the major and latest findings regarding concrete shrinkage types, influencing parameters, and their impacts on concrete properties. Also, it discusses the efficiency of the available chemical and mineral admixtures in controlling the shrinkage of concrete.
Tensile strength of soil is indeed one of the important parameters to many civil engineering applications. It is related to wide range of cracks specially in places such as slops, embankment dams, retaining walls or landfills. Despite of the fact that tensile strength is usually presumed to be zero or negligible, its effect on the erosion and cracks development in soil is significant. Thus, to study the tensile strength and behavior of soil several techniques and devices were introduced. These testing methods are classified into direct and indirect ways depending on the loading conditions. The direct techniques including c-shaped mold and 8-shaped mold are in general complicated tests and require high accuracy as they are based on applying a uniaxial tension load directly to the specimen. On the other hand, the indirect tensile tests such as the Brazilian, flexure beam, double punch and hollow cylinder tests provide easy ways to assess the tensile strength of soil under controlled conditions. Although there are many studies in this topic the current state of the art lack of a detailed article that reviews these methodologies. Therefore, this paper is intended to summarize and compare available tests for investigating the tensile behavior of soils.
There is no doubt that concrete is one of the most consumed materials all over the world. It is a composite mix widely used for constructing structures and infrastructures to sustain environmentally induced stresses such as thermal and seismic. As the mainstream of construction industry is tended to find out feasible solutions, Roller Compacted Concrete (RCC) was introduced to play an essential role in the development of dams and pavements, where over 550 RCC dams were created by the end of 2012. In fact, this material has the same basic constituents of conventional concrete with a zero-slump and a significant difference in the placing process. The majority of available studies in the literature are composed of numerical investigations to assess the thermal and seismic behavior of RCC dams and to provide a clear view on how to improve its performance under various loading conditions. This paper summarizes and compares the general conclusions of recent works on evaluating the structural performance of RCC dams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.