<span lang="EN-US">In this paper, we present a new dual band metamaterial printed antenna for radio frequency identification applications. The proposed antenna consists of two L-shaped slot in the radiating element for dual band operation and a complementary split ring resonator etched from the ground plane for size miniaturization. This antenna is designed and optimized by CST microwave studio on FR-4 substrate with thickness of 1.6 mm, dielectric constant of 4.4 and tangent loss of 0.025. A microstrip line with characteristic impedance of 50 ohms is used to feed this antenna. A prototype of the proposed antenna is fabricated to validate the simulation results. The measured and simulated results are in good agreement. </span>
International audienceIn this paper, a compact diplexer based on coupled stepped impedance resonators (SIRs) is designed for Digital Communication System and the industrial, scientific and medical applications. The diplexer is composed from two band-pass filters operated at 1.8 and 2.45 GHz respectively. The size and the position of the SIR and the feed lines are determined through the theoretical design and the simulation. The diplexer has less than 2.2 dB insertion loss and more than 21 dB of isolation. The diplexer performances are investigated numerically by using Momentum ADS Agilent and CST microwave software.The electromagnetic simulated results of the proposed diplexer show a good agreement with the measured results
In this paper design of microstrip patch antennas are presented for ultra wideband (UWB) applications. The designed antennas have good matching input impedance in a wide frequency band covering the UWB frequency band which is defined by the FCC. The proposed antennas consist of rectangular patch which is fed by 50Ω microstrip line. These antennas are investigated and optimized by using CST microwave studio, they are validated by using another electromagnetic solver HFSS. The proposed antennas are designed and optimized taking into account the optimized of the ground by using Defected Ground Structure (DGS) in order to improve the frequency band of microstrip antenna. Hence, the impedance and surface current of the antenna structures are affected by DGS. As will be seen, the operation bandwidth of the proposed antennas is from 3 to 15 GHz (return loss≤-10 dB), corresponding to wide input impedance bandwidth (133.33%), with stable omnidirectional radiation patterns and important gain. A good agreement has been obtained between simulation and measurement results in term of bandwidth clearly show the validity of the proposed structures. These antennas are useful for UWB applications, may be able to potentially minimize frequency interference from many wireless technologies i.e WLAN, WiMAX. Details of the antennas have been investigated numerically and experimentally.
This work deals with the design, simulation, fabrication and experimentation of a novel 2.45 GHz rectifier for wireless power transmission applications. We have designed a voltage multiplier topology rectifier including 5 Schottky diodes known by their low threshold. This rectifier could perform a wireless power supply for many cases where the use of batteries or wires is impossible due to many limitations. The circuit was analyzed and optimized with the Harmonic Balance method provided by the Advanced Design System (ADS). Good performances are observed through the simulated results and confirmed by the fabrication tests in terms of RF-DC conversion efficiency, DC output voltage level and matching input impedance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.