Functioning as a cooling system, a radiator is an essential component in reducing the temperature of an internal combustion engine (ICE) of a vehicle by absorbing the heat and dissipated it into the air. With good and effective radiator, the engine will perform at optimized condition. In this study, the performance of radiator was analyzed at different radiator materials and coolant concentrations. A spark ignition (SI) 1.5L engine radiator system was used at 20%, 30%, 40%, 50% and 60% ethylene glycol coolant concentrations. The simulation of heat transfer was performed on different fins material, aluminum, brass and copper using commercial available finite element analysis (FEA) software. Promising results showed that, copper fins was the best among the materials. It is also observed that the lower the coolant concentration, the better the performance of the radiator in reducing the ICE temperature.
The world is demanding for alternative way of energy consumption for vehicle usage. The energy efficient vehicle (EEV) is one of the advancement for future land transportation that known as hybrid and electric vehicles nowadays. The vehicles use different energy other than fuel which is electric energy. This paper emphasizes the development of electromagnetic energy regenerative suspension system (EReSS) as a system that harvests energy from the vibration of vehicle suspension system. The harvested energy is converted to electrical energy for vehicle usage. A prototype of electromagnetic EReSS is fabricated and laboratory experimentation on test rig is conducted to test the voltage output. It is observed that the EReSS can harvest the wasted energy from the vibration and produce sufficient electric energy for the vehicle electrical and electronic usage. The number of windings of the coil and diameter of the coil affect the voltage output of the EReSS. The voltage output of the EReSS can be optimized by setting up the parameters. As the EReSS is proven to harvest energy, it can be used on hybrid and electric vehicle to improve the efficiency of the vehicle and reduce the fuel consumption.
Abstract-Suspension system is the mechanism that is applied between the tire and the body of a vehicle. It absorbs the undesirable force that exerted on the tire transmitted to the body of the vehicle. In order to reduce the undesirable force from uneven road, the spring stiffness and damping value of the suspension should be tuned to improve the passengers' comfort. The suspension is tuned at various values of spring stiffness and damping that initially verified from a commercial vehicle dynamic software. The tuning process considers the vertical and pitch performances of the vehicle through a simple step inputs. From the analysis, the values of overshoot for vertical and pitch motions are compared. The lower the values the better the performance of the tuned parameters. A sport utility vehicle (SUV) is used for this tuning analysis. The optimal values of spring stiffness and damping are determined and can be used for further dynamic control and comfort improvement study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.