Abstract-Text similarity plays an important role in natural language processing tasks such as answering questions and summarizing text. At present, state-of-the-art text similarity algorithms rely on inefficient word pairings and/or knowledge derived from large corpora such as Wikipedia. This article evaluates previous word similarity measures on benchmark datasets and then uses a hybrid word similarity in a novel text similarity measure (TSM). The proposed TSM is based on information content and WordNet semantic relations. TSM includes exact word match, the length of both sentences in a pair, and the maximum similarity between one word and the compared text. Compared with other well-known measures, results of TSM are surpassing or comparable with the best algorithms in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.