Three muscadine grape genotypes (Muscadinia rotundifolia (Michx.) Small) were evaluated for their metabolite profiling and antioxidant activities at different berry developmental stages. A total of 329 metabolites were identified using UPLC-TOF-MS analysis (Ultimate 3000LC combined with Q Exactive MS and screened with ESI-MS) in muscadine genotypes throughout different developmental stages. Untargeted metabolomics study revealed the dominant chemical groups as amino acids, organic acids, sugars, and phenolics. Principal component analysis indicated that developmental stages rather than genotypes could explain the variations among the metabolic profiles of muscadine berries. For instance, catechin, epicatechin-3-gallate, and gallic acid were more accumulated in ripening seeds (RIP-S). However, tartaric acid and malonic acid were more abundant during the fruit-set (FS) stage, and malic acid was more abundant in the veraison (V) stage. The variable importance in the projection (VIP > 0.5) in partial least-squares–discriminant analysis described 27 biomarker compounds, representing the muscadine berry metabolome profiles. A heatmap of Pearson’s correlation analysis between the 27 biomarker compounds and antioxidant activities was able to identify nine antioxidant determinants; among them, gallic acid, 4-acetamidobutanoic acid, trehalose, catechine, and epicatechin-3-gallate displayed the highest correlations with different types of antioxidant activities. For instance, DPPH and FRAP conferred a similar antioxidant activity pattern and were highly correlated with gallic acid and 4-acetamidobutanoic acid. This comprehensive study of the metabolomics and antioxidant activities of muscadine berries at different developmental stages is of great reference value for the plant, food, pharmaceutical, and nutraceutical sectors.
Background/Aim: Triple-negative breast cancer (TNBC) is the most aggressive subtype, predominant in African American women. In this study, the antioxidant/anticancer activity of muscadine grape extracts and the role of their phenolic and flavonoid contents in exerting these properties were investigated in TNBC cells. Materials and Methods: Berry extracts from muscadine genotypes were investigated for total phenolic content (TPC), total flavonoid content (TFC), antioxidant capacity, and anticancer effects using breast cancer cell lines, representing Caucasians and African Americans. Results: The antioxidant activity was associated with high TPC content. Extracts showed cytotoxicity up to 78.6% in Caucasians and 90.7% in African American cells, with an association with high antioxidant capacity. There was a strong correlation between TPC and anticancer/antioxidant activities. Conclusion: The anticancer and antioxidant effects of muscadine grapes are attributed to the TPC of extracts, which showed a stronger positive correlation with growth inhibition of African American breast cancer cells compared to Caucasians.
Phytochemical investigation of the n-BuOH fraction of the mangrove plant Lumnitzera racemosa WILLD. (Combretaceae) led to the isolation of one new flavonoid glycoside; myrcetin 3-O-methyl glucuronate (1), one new phenolic glycoside; lumniracemoside (2) and one new aliphatic alcohol glycoside; n-hexanol 1-Orutinoside (3), in addition to seven known compounds (4-10). The structures of these compounds were determined by spectroscopic analyses (UV, IR, high resolution-electrospray ionization (HR-ESI)-MS, one-and two-dimensional (1D-and 2D)-NMR). Compound 7 showed the highest hepatoprotective activity against acetaminophen-induced hepatotoxicity using human HepG2 cells at protection % value of 34.2 3.1%, while compounds 1, 2, 3, 6, and 9 showed weak to moderate hepatoprotective activity (11.6-18.9%). Almost all of these compounds showed stronger 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity compared with the standard Trolox. These results suggest the usefulness of this plant extract and the isolated compounds as promising hepatoprotective agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.