The objective of the present work is to investigate the pyrolysis of sugarcane bagasse in a semi-batch reactor and study the effect of process parameters of pyrolysis on the products yield to determine optimum parameters for maximum bio-oil production. Parameters of the pyrolysis process such as temperature, particle size of sugarcane bagasse and flow rate of nitrogen (N2) have been varied as 350–600 °C, 0.25–2 mm and 100–500 cm3/min, respectively. According to the various pyrolysis conditions applied in the experimental studies, the obtained oil, char and gas yields ranged between 38 and 45 wt%, 24 and 36 wt%, and 23 and 37 wt%, respectively. The maximum pyrolysis bio-oil yield of 45 wt% was achieved at temperature of 500 °C, particle size of 0.5 -1 mm with nitrogen(N2) flow rate of 200 cm3/min. Based on the results captured under this study's pyrolysis conditions, temperature is considered to be the most important parameter for product distribution. As the increases of the pyrolysis temperature the bio-char yield decreased and increase of gas yield. The bio-oil yield increases with increasing the temperature, reaches a maximum value at about 500 °C and reduces thereafter at higher temperature is expect due to secondary cracking reactions of the volatiles, which results produce a higher gaseous yield.
The objective of the present work is to investigate the pyrolysis of sugarcane bagasse in a semi-batch reactor and study the effect of process parameters of pyrolysis on the products yield to determine optimum parameters for maximum bio-oil production. Parameters of the pyrolysis process such as temperature, particle size of sugarcane bagasse and flow rate of nitrogen (N2) have been varied as 350–600 ºC, 0.25–2 mm and 100–500 cm3/min, respectively. According to the various pyrolysis conditions applied in the experimental studies, the obtained oil, char and gas yields ranged between 38 and 45 wt%, 24 and 36 wt%, and 23 and 37 wt%, respectively. The maximum pyrolysis bio-oil yield of 45 wt% was achieved at temperature of 500 ºC, particle size of 0.5 -1 mm with nitrogen(N2) flow rate of 200 cm3/min. Based on the results captured under this study's pyrolysis conditions, temperature is considered to be the most important parameter for product distribution. As the increases of the pyrolysis temperature the bio-char yield decreased and increase of gas yield. The bio-oil yield increases with increasing the temperature, reaches a maximum value at about 500 ºC and reduces thereafter at higher temperature is expected due to secondary cracking reactions of the volatiles, which results produce a higher gaseous yield.
Sugarcane bagasse pyrolysis in a fixed-bed reactor has been studied. The Pyrolytic oil and char obtained were characterized to determine their feasibility as fuels and chemical reagent in other processes. The runs were performed under the following conditions: temperature from 350°C–600°C, sample size of 0.5–1 mm, and an inert gas flow rate of 200 cm3/min. The study aimed to characterize the obtained oil and char to determine their feasibility as source of energy and chemical product. The product has been characterized by different techniques including gas chromatography–mass spectrometry (GC–MS), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). The obtained bio-oil exhibited a molecular formula of CH1.03O0.28 N0.012 and a higher heating value (HHV) of 27.68 MJ/kg. These results indicated that it could be used after refining as a source of fuel and produced a chemical product. In addition, the obtained biochar (HHV = 31.53 MJ/kg) can be used as a solid fuel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.