Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis. To improve diagnosis and treatment, key mechanisms of deregulated molecular functions have to be identified. Using microarray analysis, the expression patterns of 5600 human genes were assessed in PDAC by comparison with the normal pancreas and chronic pancreatitis (CP). The expression of 467 of 5600 genes was increased in PDAC in comparison to the normal pancreas, and the expression of 120 of these genes was not increased in CP. In addition, 341 of 5600 genes were expressed at decreased levels in PDAC tissues, of which 96 were decreased in comparison to both normal and CP tissues. Thus, a total of 808 of 5600 human genes were differentially expressed in pancreatic cancer. The identification of a large panel of altered genes in PDAC will stimulate additional studies that will lead to improved understanding of the molecular mechanisms underlying pancreatic malignant growth.
Patients suffering from severe recurrent hypoglycemia after GBS can be treated, in most cases, just by restoration of gastric restriction. Distal pancreatectomy should be considered a second-line treatment.
Osteonectin is markedly overexpressed in pancreatic cancer and has the potential to increase the invasiveness of pancreatic cancer cells.
Connective tissue growth factor (CTGF), which is regulated by transforming growth factor-ss (TGFss), has recently been implicated in the pathogenesis of fibrotic diseases and tumor stroma. Inasmuch as generation of desmoplastic tissue is characteristic for pancreatic cancer, it is not known whether it gives pancreatic cancer cells a growth advantage or is a reaction of the body to inhibit cancer cell progression. In the present study we analyzed the expression and localization of CTGF and evaluated whether it influences the prognosis of pancreas cancer. Tissue samples were obtained from 25 individuals (6 women, 19 men) undergoing pancreatic resection for pancreatic cancer. Tissue samples from 13 previously healthy organ donors (5 women, 8 men) served as controls. Expression of CTGF was studied by Northern blot analysis. In situ hybridization and immunohistochemistry localized the respective mRNA moieties and proteins in the tissue samples. Northern blot analysis revealed that pancreatic cancer tissue samples exhibited a 46-fold increase in CTGF mRNA expression ( p < 0.001) over that of normal controls. In vitro studies confirmed that pancreatic stellate cells are the major source of CTGF mRNA expression and revealed a large variance in basal and TGFss-induced CTGF expression in cultured pancreatic cancer cells. This could also be confirmed by in situ hybridization, indicating that CTGF mRNA signals were located principally in fibroblasts, with only weak signals in the cancer cells. High CTGF mRNA levels in the tissue samples correlated with better tumor differentiation ( p < 0.03). In addition, patients whose tumors exhibited high CTGF mRNA levels (> onefold increase above normal controls) lived significantly longer than those whose tumors expressed low CTGF mRNA levels (none to onefold) ( p < 0.04 multivariate analysis). Our present data indicate that CTGF, as a downstream mediator of TGFss, is overexpressed in connective tissue cells and to a lesser extent in pancreatic cancer cells. Because patients with high CTGF mRNA expression levels have a better prognosis, our findings indicate that the desmoplastic reaction provides a growth disadvantage for pancreatic cancer cells.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with an overall 5-year survival rate of less than 5%. Invasive tumor growth and early metastasis are two important reasons for this dismal prognosis. Osteopontin (OPN) is a secretory protein with a variety of functions, for example in cell adhesion and migration, inflammatory reaction and apoptosis. In this study the functional role of OPN in human pancreatic cancer and its potential use as a disease marker were analyzed. By real time quantitative PCR, there was a 2.2-fold and 1.6-fold increase of OPN mRNA in pancreatic cancers (n = 23) and chronic pancreatitis samples (n = 22), respectively, compared to normal pancreatic tissues (n = 20). Immunohistochemical analysis demonstrated OPN staining in 60% of the primary pancreatic tumors and in 72% of the lymph node and liver metastases. ELISA analysis of serum samples obtained from pancreatic cancer patients (n = 70), chronic pancreatitis patients (n = 12), and healthy donors (n = 20) showed a 1.6-fold increase in OPN serum levels in patients with tumors and a 1.9-fold increase in patients with chronic pancreatitis. Recombinant human OPN significantly increased the invasiveness of pancreatic cancer cells, without having any impact on cell proliferation. In addition, down regulation of OPN by specific siRNA molecules decreased pancreatic cancer cell invasion. In conclusion, OPN serum levels in pancreatic cancer and chronic pancreatitis patients are not significantly different, thereby restricting its role as a prognostic or follow-up marker. Our results do suggest, however, that blockade of OPN might be useful as a therapeutic approach to inhibit invasion and metastasis of pancreatic cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.