Fast and efficient motion planning algorithms are crucial for many state-of-the-art robotics applications such as self-driving cars. Existing motion planning methods become ineffective as their computational complexity increases exponentially with the dimensionality of the motion planning problem. To address this issue, we present Motion Planning Networks (MPNet), a neural network-based novel planning algorithm. The proposed method encodes the given workspaces directly from a point cloud measurement and generates the end-to-end collision-free paths for the given start and goal configurations. We evaluate MPNet on various 2D and 3D environments including the planning of a 7 DOF Baxter robot manipulator. The results show that MPNet is not only consistently computationally efficient in all environments but also generalizes to completely unseen environments. The results also show that the computation time of MPNet consistently remains less than 1 second in all presented experiments, which is significantly lower than existing state-of-the-art motion planning algorithms.
For robots to coexist with humans in a social world like ours, it is crucial that they possess human-like social interaction skills. Programming a robot to possess such skills is a challenging task. In this paper, we propose a Multimodal Deep Q-Network (MDQN) to enable a robot to learn human-like interaction skills through a trial and error method. This paper aims to develop a robot that gathers data during its interaction with a human, and learns human interaction behavior from the high dimensional sensory information using end-to-end reinforcement learning. This paper demonstrates that the robot was able to learn basic interaction skills successfully, after 14 days of interacting with people.
Rapidly-exploring Random Tree Star(RRT*) is a recently proposed extension of Rapidly-exploring Random Tree (RRT) algorithm that provides a collisionfree, asymptotically optimal path regardless of obstacles geometry in a given environment. However, one of the limitation in the RRT* algorithm is slow convergence to optimal path solution. As a result it consumes high memory as well as time due to the large number of iterations utilised in achieving optimal path solution. To overcome these limitations, we propose the Potential Function Based-RRT* (P-RRT*) that incorporates the Artificial Potential Field Algorithm in RRT*. The proposed algorithm allows a considerable decrease in the number of iterations and thus leads to more efficient memory utilization and an accelerated convergence rate. In order to illustrate the usefulness of the proposed algorithm * This is the authors' version of the paper published in Springer Autonomous Robots Journal. The source code of this paper is available at: github.com/ahq1993 with the name of p-rrtstar.in terms of space execution and convergence rate, this paper presents rigorous simulation based comparisons between the proposed techniques and RRT* under different environmental conditions. Moreover, both algorithms are also tested and compared under non-holonomic differential constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.