Digital libraries are online collections of digital objects that can include text, images, audio, or videos. It has long been observed that named entities (NEs) are key to the access to digital library portals as they are contained in most user queries. Combined or subsequent to the recognition of NEs, named entity linking (NEL) connects NEs to external knowledge bases. This allows to differentiate ambiguous geographical locations or names (John Smith), and implies that the descriptions from the knowledge bases can be used for semantic enrichment. However, the NEL task is especially challenging for large quantities of documents as the diversity of NEs is increasing with the size of the collections. Additionally digitized documents are indexed through their OCRed version which may contains numerous OCR errors. This paper aims to evaluate the performance of named entity linking over digitized documents with different levels of OCR quality. It is the first investigation that we know of to analyze and correlate the impact of document degradation on the performance of NEL. We tested state-of-the-art NEL techniques over several evaluation benchmarks, and experimented with various types of OCR noise. We present the resulting study and subsequent recommendations on the adequate documents and OCR quality levels required to perform reliable named entity linking. We further provide the first evaluation benchmark for NEL over degraded documents.
The use of digital libraries requires an easy accessibility to documents which is strongly impacted by the quality of document indexing. Named entities are among the most important information to index digital documents. According to a recent study, 80% of the top 500 queries sent to a digital library portal contained at least one named entity [2]. However most digitized documents are indexed through their OCRed version which includes numerous errors that may hinder the access to them. Named Entity Recognition (NER) is the task that aims to locate important names in a given text and to categorize them into a set of predefined classes (person, location, organization). This paper aims to estimate the performance of NER systems through OCRed data. It exhaustively discusses NER errors arising from OCR errors; we studied the correlation between NER accuracy and OCR error rates and estimated the cost of character insertion, deletion and substitution in named entities. Results show that even if the OCR engine does contaminate named entities with errors, NER systems can overcome this issue and correctly recognize some of them.
This paper tackles the task of named entity recognition (NER) applied to digitized historical texts obtained from processing digital images of newspapers using optical character recognition (OCR) techniques. We argue that the main challenge for this task is that the OCR process leads to misspellings and linguistic errors in the output text. Moreover, historical variations can be present in aged documents, which can impact the performance of the NER process. We conduct a comparative evaluation on two historical datasets in German and French against previous state-of-the-art models, and we propose a model based on a hierarchical stack of Transformers to approach the NER task for historical data. Our findings show that the proposed model clearly improves the results on both historical datasets, and does not degrade the results for modern datasets.
The accessibility to digitized documents in digital libraries is greatly affected by the quality of document indexing. Among the most relevant information to index, named entities are one of the main entry points used to search and retrieve digital documents. However, most digitized documents are indexed through their OCRed version and OCR errors hinder their accessibility. This paper aims to quantitatively estimate the impact of OCR quality on the performance of named entity recognition (NER). We tested state-of-the-art NER techniques over several evaluation benchmarks, and experimented with various levels and types of OCR noise so as to estimate the impact of OCR noise on NER performance. To the best of our knowledge, no other research work has systematically studied the impact of OCR on named entity recognition over data sets in multiple languages. The final outcome of this study is an evaluation over historical newspaper data provided by the national library of Finland, resulting in a large increase over the best-known results to this day.
Named entity processing over historical texts is more and more being used due to the massive documents and archives being stored in digital libraries. However, due to the poor annotated resources of historical nature, information extraction performances fall behind those on contemporary texts. In this paper, we introduce the development of the NewsEye resource, a multilingual dataset for named entity recognition and linking enriched with stances towards named entities. The dataset is comprised of diachronic historical newspaper material published between 1850 and 1950 in French, German, Finnish, and Swedish. Such historical resource is essential in the context of developing and evaluating named entity processing systems. It evenly allows enhancing the performances of existing approaches on historical documents which enables adequate and efficient semantic indexing of historical documents on digital cultural heritage collections. CCS CONCEPTS• Information systems → Information retrieval; Digital libraries and archives; • General and reference → Cross-computing tools and techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.