PurposeThe bid/no-bid decision is critical to the success of construction contractors. The factors affecting the bid/no-bid decision are either qualitative or quantitative. Previous studies on modeling the bidding decision have not extensively focused on distinguishing qualitative and quantitative factors. Thus, the purpose of this paper is to improve the bidding decision in construction projects by developing tools that consider both qualitative and quantitative factors affecting the bidding decision.Design/methodology/approachThis study proposes a mixed qualitative-quantitative approach to deal with both qualitative and quantitative factors. The mixed qualitative-quantitative approach is developed by combining a rule-based expert system and fuzzy-based expert system. The rule-based expert system is used to evaluate the project based on qualitative factors and the fuzzy expert system is used to evaluate the project based on the quantitative factors in order to reach the comprehensive bid/no-bid decision.FindingsThree real bidding projects are used to investigate the applicability and functionality of the proposed mixed approach and are tested with experts of a construction company in Alberta, Canada. The results demonstrate that the mixed approach provides a more reliable, accurate and practical tool that can assist decision-makers involved in the bid/no-bid decision.Originality/valueThis study contributes theoretically to the body of knowledge by (1) proposing a novel approach capable of modeling all types of factors (either qualitative or quantitative) affecting the bidding decision, and (2) providing means to acquire, store and reuse expert knowledge. Practical contribution of this paper is to provide decision-makers with a comprehensive model that mimics the decision-making process and stores experts' knowledge in the form of rules. Therefore, the model reduces the administrative burden on the decision-makers, saves time and effort and reduces bias and human errors during the bidding process.
It is common in industrial construction projects for data to be collected and discarded without being analyzed to extract useful knowledge. A proposed integrated methodology based on a five-step Knowledge Discovery in Data (KDD) model was developed to address this issue. The framework transfers existing multidimensional historical data from completed projects into useful knowledge for future projects. The model starts by understanding the problem domain, industrial construction projects. The second step is analyzing the problem data and its multiple dimensions. The target dataset is the labour resources data generated while managing industrial construction projects. The next step is developing the data collection model and prototype data warehouse. The data warehouse stores collected data in a ready-for-mining format and produces dynamic On Line Analytical Processing (OLAP) reports and graphs. Data was collected from a large western-Canadian structural steel fabricator to prove the applicability of the developed methodology. The proposed framework was applied to three different case studies to validate the applicability of the developed framework to real projects data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.