Technological advancement in Building Integrated Photovoltaics (BIPV) has converted the building façade into a renewable energy-based generator. The BIPV façade is designed to provide energy generation along with conventional design objectives such as aesthetics and environmental control. The challenge however, is that architectural design objectives sometimes conflict with energy performance, such as the provision of view and daylight versus maximum power output. In innovative cases, the characteristics of conventional BIPV façades have been modified by researchers to address such conflicts through customization as an emerging trend in BIPV façade design. Although extensive reviews exist on BIPV product types, design integration, adoption barriers and performance issues, research on BIPV customization has not been reviewed as a solution to BIPV adoption. This paper seeks to review the potential of BIPV façade customization as a means of enhancing BIPV adoption. The current paper identifies customization parameters ranging from the customization category, level, and strategies, and related architectural potential along with an assessment of their impact. The findings reflect that elemental and compositional level customization using combined customization strategies provide enhanced BIPV products. These products are well integrated for both energy generation and aesthetic applications with a power output increase of up to 80% in some cases. The paper concludes that a wide range of BIPV adoption barriers such as aesthetics, architectural integration, and performance can be overcome by appropriate BIPV customization.
Phase change materials (PCMs) have been identified as potential candidates for building energy optimization by increasing the thermal mass of buildings. The increased thermal mass results in a drop in the cooling/heating loads, thus decreasing the energy demand in buildings. However, direct incorporation of PCMs into building elements undermines their structural performance, thereby posing a challenge for building integrity. In order to retain/improve building structural performance, as well as improving energy performance, micro-encapsulated PCMs are integrated into building materials. The integration of microencapsulation PCMs into building materials solves the PCM leakage problem and assures a good bond with building materials to achieve better structural performance. The aim of this article is to identify the optimum micro-encapsulation methods and materials for improving the energy, structural and safety performance of buildings. The article reviews the characteristics of micro-encapsulated PCMs relevant to building integration, focusing on safety rating, structural implications, and energy performance. The article uncovers the optimum combinations of the shell (encapsulant) and core (PCM) materials along with encapsulation methods by evaluating their merits and demerits.
Fusarium species are reported frequently as the most common causative agents of fungal keratitis in tropical countries such as India. Sixty-five fusaria isolated from patients were subjected to multilocus DNA sequencing to characterize the spectrum of the species associated with keratitis infections in India. Susceptibilities of these fusaria to ten antifungals were determined in vitro by the broth microdilution method. An impressive phylogenetic diversity of fusaria was reflected in susceptibilities differing at species level. Typing results revealed that the isolates were distributed among species in the species complexes (SCs) of F. solani (FSSC; n = 54), F. oxysporum (FOSC; n = 1), F. fujikuroi (FFSC; n = 3), and F. dimerum (FDSC; n = 7). Amphotericin B, voriconazole, and clotrimazole proved to be the most effective drugs, followed by econazole.
Skylights and windows are building openings that enhance human comfort and well-being in various ways. Recently, a massive drive is witnessed to replace traditional openings with building integrated photovoltaic (BIPV) systems to generate power in a bid to reduce buildings’ energy. The problem with most of the BIPV glazing lies in the obstruction of occupants’ vision of the outdoor view. In order to resolve this problem, new technology has emerged that utilizes quantum dots semiconductors (QDs) in glazing systems. QDs can absorb and re-emit the incoming radiation in the desired direction with the tunable spectrum, which renders them favorable for building integration. By redirecting the radiation towards edges of the glazing, they can be categorized as luminescent solar concentrators (QD-LSCs) that can help to generate electricity while maintaining transparency in the glazing. The aim of this paper is to review the different properties of core/shell quantum dots and their potential applications in buildings. Literature from various disciplines was reviewed to establish correlations between the optical and electrical properties of different types, sizes, thicknesses, and concentration ratios of QDs when used in transparent glazing. The current article will help building designers and system integrators assess the merits of integrating QDs on windows/skylights with regards to energy production and potential impact on admitted daylighting and visual comfort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.