SUMMARY The objectives of the study were to compare the flexural modulus and strength of restorative and flowable bulk-fill resin-based composites (RBCs) to their conventional counterparts and to determine the effects of conditioning environment on their flexural properties. The materials evaluated included three conventional RBCs (Filtek Z350, Tetric N Ceram, and Beautifil II), three restorative bulk-fill RBCs (Filtek Bulk-Fill Restorative, Tetric N Ceram Bulk-Fill, and Beautifil Bulk-fill Restorative), as well as three flowable bulk-fill RBCs (Filtek Bulk-Fill Flowable, Tetric N Flow Bulk-Fill, and Beautifil Bulk-Fill Flowable). Specimens were fabricated using customized stainless-steel molds, finished, measured, and randomly divided into four groups. The various RBCs were conditioned in the following mediums (n=10) for seven days at 37°C: air, artificial saliva (SAGF), 0.02 N citric acid, and 50% ethanol-water solution. After conditioning, the specimens were rinsed, blotted dry, measured, and subjected to flexural testing using a universal testing machine. Data were subjected to statistical analysis using analysis of variance and the Tukey test at a significance level of α = 0.05. Significant differences in flexural properties were observed between materials and conditioning mediums. Bulk-fill restorative RBCs exhibited higher flexural modulus than their bulk-fill flowable and conventional counterparts. With the exception of Filtek Bulk-Fill Flowable, bulk-fill flowable RBCs had significantly higher flexural strength than bulk-fill restorative and conventional RBCs. Flexural properties were highest when RBCs were conditioned in air and generally the lowest after exposure to ethanol.
This study investigated the viscoelastic properties of contemporary bulk-fill restoratives in distilled water and artificial saliva using dynamic mechanical analysis. The materials evaluated included a conventional composite (Filtek Z350), two bulk-fill composites (Filtek Bulk-fill and Tetric N Ceram), a bulk-fill giomer (Beautifil-Bulk Restorative), and two novel reinforced glass ionomer cements (Zirconomer [ZR] and Equia Forte [EQ]). The glass ionomer materials were also assessed with and without resin coating (Equia Forte Coat). Test specimens 12 × 2 × 2 mm of the various materials were fabricated using customized stainless-steel molds. After light polymerization/initial set, the specimens were removed from the molds, finished, measured, and conditioned in distilled water or artificial saliva at 37°C for seven days. The materials (n=10) were then subjected to dynamic mechanical testing in flexure mode at 37°C and a frequency of 0.1 to 10 Hz. Storage modulus, loss modulus, and loss tangent data were subjected to normality testing and statistical analysis using one-way analysis of variance/Dunnett's test and t-test at a significance level of p < 0.05. Mean storage modulus ranged from 3.16 ± 0.25 to 8.98 ± 0.44 GPa, while mean loss modulus ranged from 0.24 ± 0.03 to 0.65 ± 0.12 GPa for distilled water and artificial saliva. Values for loss tangent ranged from 45.7 ± 7.33 to 134.2 ± 12.36 (10). Significant differences in storage/loss modulus and loss tangent were observed between the various bulk-fill restoratives and two conditioning mediums. Storage modulus was significantly improved when EQ and ZR was not coated with resin.
The effect of dietary solvents on flexural properties of bulk-fill composites was material and medium dependent.
The objective of this study was to determine the influence of specimen dimension and conditioning medium on the dynamic and static flexural properties of resin-based composites (RBCs). One conventional (Filtek Z350) and two bulk-fill RBCs (Filtek Bulk-fill and Beautifil-Bulk Restorative) were evaluated. Bar-shaped specimens with dimensions 25 × 2 × 2 mm (ISO flexural [IFT]) or 12 × 2 × 2 mm (mini-flexural [MFT]) were fabricated using customized stainless-steel molds, finished, measured, randomly divided into two groups, and conditioned in air or artificial saliva (SAGF) for seven days at 37°C. The specimens (n=10) were then subjected to dynamic and static three-point flexural testing. Data for storage modulus, loss modulus, loss tangent, flexural strength, and modulus were computed and subjected to t-test, analysis of variance/Tukey test, and Pearson correlation at a significance level of α = 0.05. For both IFT and MFT, significant differences in dynamic and static flexural properties were more prevalent between materials after storage in saliva. For both conditioning mediums, the strongest correlation between IFT and MFT was observed for flexural strength. While significant positive correlations were observed for all flexural properties with saliva, no significant correlations were detected for loss tangent and flexural modulus with air. For both IFT and MFT, storage in saliva appeared to be more discriminative than storage in air. As moderate to strong positive relationships exist between IFT and MFT for dynamic and static flexural properties, the mini-flexural test holds promise as a replacement for the ISO 4049 in view of its clinical relevance and greater efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.