Purpose -Extreme value model is one of the most important models that are applicable in air pollution data. This paper aims at introducing a new model of extreme value that is more suitable in environmental studies. Design/methodology/approach -The parameters of the new model have been estimated by method of maximum likelihood. In order to relate to air pollution impacts, the new extreme value model was used, applied to carbon monoxide (CO) in parts per million (ppm) at several places in Malaysia. The objective of this analysis is to fit the extreme values with a new model and to examine its performance. Comparison of the new model with others is shown to illustrate the applicability of this new model. Findings -The results show that the new model is the best fit using the method of maximum likelihood. The new model gives a significant impact of CO data, which gives the smallest standard error and p-values. The new extreme value model is able to identify significantly problems of air pollution. The results presented by the new extreme value model can be used as an air quality management tool by providing the decision makers means to determine the required reduction of source. Originality/value -The new extreme value model has mostly been applied in environmental studies for the statistical treatment of air pollution. The results of the numerical and simulated CO data indicate that the new model both is easy to use and can achieve even higher accuracy compared with other models.
If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information. About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation. AbstractPurpose -Exact confidence interval estimation for the new extreme value model is often impractical. This paper seeks to evaluate the accuracy of approximate confidence intervals for the two-parameter new extreme value model. Design/methodology/approach -The confidence intervals of the parameters of the new model based on likelihood ratio, Wald and Rao statistics are evaluated and compared through the simulation study. The criteria used in evaluating the confidence intervals are the attainment of the nominal error probability and the symmetry of lower and upper error probabilities. Findings -This study substantiates the merits of the likelihood ratio, the Wald and the Rao statistics. The results indicate that the likelihood ratio-based intervals perform much better than the Wald and Rao intervals. Originality/value -Exact interval estimates for the new model are difficult to obtain. Consequently, large sample intervals based on the asymptotic maximum likelihood estimators have gained widespread use. Intervals based on inverting likelihood ratio, Rao and Wald statistics are rarely used in commercial packages. This paper shows that the likelihood ratio intervals are superior to intervals based on the Wald and the Rao statistics.
In this this paper, we define and study a new generalization of the Power distribution and the quadratic rank transmutation map (QRTM) in order to generate a flexible family of probability distribution taking Power distribution as the base distribution. The new distribution is called the beta transmuted Power (BTP) distribution. Some properties of the distribution such as moments, quantiles, mean deviation and order statistics are derived. The method of maximum likelihood is proposed to estimate the model parameters. The asymptotic confidence intervals for the parameters are also obtained based on asymptotic variance-covariance matrix. A simulation study is conducted to study the performance of the estimators. The importance and flexibility of the new model is proved empirically using a real data set.
In this paper we propose and test a composite generalizer of the Lomax distribution .The genesis of the beta distribution and transmuted map is used to develop the so-called beta transmuted Lomax (BTL) distribution. The properties of the distribution are discussed and explicit expressions are derived for the moments, mean deviations, quantiles, distribution of order statistics and reliability. The maximum likelihood method is used for estimating the model parameters, and the finite sample performance of the estimators is assessed by simulation. Finally, the authors demonstrate the usefulness of the new distribution in analysing positive data.
In this paper, we introduce a new family of continuous distributions called the beta transmuted Dagum distribution which extends the beta and transmuted familys. The genesis of the beta distribution and transmuted map is used to develop the so-called beta transmuted Dagum (BTD) distribution. The hazard function, moments, moment generating function, quantiles and stress-strength of the beta transmuted Dagum distribution (BTD) are provided and discussed in detail. The method of maximum likelihood estimation is used for estimating the model parameters. A simulation study is carried out to show the performance of the maximum likelihood estimate of parameters of the new distribution. The usefulness of the new model is illustrated through an application to a real data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.