Respiratory diseases indicate severe medical problems. They cause death for more than three million people annually according to the world health organization (WHO). Recently, with corona virus disease 19 (COVID-19) spreading the situation has become extremely serious. Thus, early detection of infected people is very vital in limiting the spread of respiratory diseases and COVID-19. In this paper, we have examined two different models using convolution neural networks. Firstly, we proposed and build a convolution neural network (CNN) model from scratch for classification the lung breath sounds. Secondly, we employed transfer learning using the pre-trained network AlexNet applying on the similar dataset. Our proposed model achieved an accuracy of 0.91 whereas the transfer learning model performing much better with an accuracy of 0.94.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.