Objective: Cardiac auscultation is the most practiced non-invasive and cost-effective procedure for the early diagnosis of heart diseases. While machine learning based systems can aid in automatically screening patients, the robustness of these systems is affected by numerous factors including the stethoscope/sensor, environment and data collection protocol. This paper studies the adverse effect of domain variability on heart sound classification and develops strategies to address this problem. Methods: We propose a novel Convolutional Neural Network (CNN) layer, consisting of time-convolutional (tConv) units, that emulate Finite Impulse Response (FIR) filters. The filter coefficients can be updated via backpropagation and be stacked in the front-end of the network as a learnable filterbank. These filters can incorporate properties such as linear/zero phase-response and symmetry while improving robustness due to domain variability. Results: Our methods are evaluated using multi-domain heart sound recordings obtained from publicly available phonocardiogram (PCG) datasets. On multi-domain evaluation tasks, the proposed method surpasses the top-scoring systems found in the literature for heart sound classification. Our systems achieved relative improvements of up to 11.84% in terms of a modified accuracy (Macc) metric, compared to state-of-theart methods. Conclusion: The results demonstrate the effectiveness of the proposed learnable filterbank CNN architecture in achieving robustness towards sensor/domain variability in PCG signals. Significance: The proposed methods pave the way for deploying automated cardiac screening systems in diversified and underserved communities.
Automatic heart sound abnormality detection can play a vital role in the early diagnosis of heart diseases, particularly in low-resource settings. The state-of-the-art algorithms for this task utilize a set of Finite Impulse Response (FIR) band-pass filters as a front-end followed by a Convolutional Neural Network (CNN) model. In this work, we propound a novel CNN architecture that integrates the front-end bandpass filters within the network using time-convolution (tConv) layers, which enables the FIR filter-bank parameters to become learnable. Different initialization strategies for the learnable filters, including random parameters and a set of predefined FIR filter-bank coefficients, are examined. Using the proposed tConv layers, we add constraints to the learnable FIR filters to ensure linear and zero phase responses. Experimental evaluations are performed on a balanced 4-fold cross-validation task prepared using the PhysioNet/CinC 2016 dataset. Results demonstrate that the proposed models yield superior performance compared to the state-of-the-art system, while the linear phase FIR filterbank method provides an absolute improvement of 9.54% over the baseline in terms of an overall accuracy metric.
Humans approximately spend a third of their life sleeping, which makes monitoring sleep an integral part of well-being. In this paper, a 34-layer deep residual ConvNet architecture for end-to-end sleep staging is proposed. The network takes raw single channel electroencephalogram (Fpz-Cz) signal as input and yields hypnogram annotations for each 30s segments as output. Experiments are carried out for two different scoring standards (5 and 6 stage classification) on the expanded PhysioNet Sleep-EDF dataset, which contains multi-source data from hospital and household polysomnography setups. The performance of the proposed network is compared with that of the state-of-the-art algorithms in patient independent validation tasks. The experimental results demonstrate the superiority of the proposed network compared to the best existing method, providing a relative improvement in epoch-wise average accuracy of 6.8% and 6.3% on the household data and multi-source data, respectively. Codes are made publicly available on Github.
In this work, we propose an ensemble of classifiers to distinguish between various degrees of abnormalities of the heart using Phonocardiogram (PCG) signals acquired using digital stethoscopes in a clinical setting, for the INTERSPEECH 2018 Computational Paralinguistics (ComParE) Heart Beats Sub-Challenge. Our primary classification framework constitutes a convolutional neural network with 1D-CNN time-convolution (tConv) layers, which uses features transferred from a model trained on the 2016 Physionet Heart Sound Database. We also employ a Representation Learning (RL) approach to generate features in an unsupervised manner using Deep Recurrent Autoencoders and use Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) classifiers. Finally, we utilize an SVM classifier on a high-dimensional segment-level feature extracted using various functionals on short-term acoustic features, i.e., Low-Level Descriptors (LLD). An ensemble of the three different approaches provides a relative improvement of 11.13% compared to our best single sub-system in terms of the Unweighted Average Recall (UAR) performance metric on the evaluation dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.