The effectiveness of superheated steam (SHS) as an alternative, eco-friendly treatment method to modify the surface of pineapple leaf fiber (PALF) for biocomposite applications was investigated. The aim of this treatment was to improve the interfacial adhesion between the fiber and the polymer. The treatment was carried out in an SHS oven for different temperatures (190–230 °C) and times (30–120 min). Biocomposites fabricated from SHS-treated PALFs and polylactic acid (PLA) at a weight ratio of 30:70 were prepared via melt-blending techniques. The mechanical properties, dimensional stability, scanning electron microscopy (SEM), and X-ray diffraction (XRD) for the biocomposites were evaluated. Results showed that treatment at temperature of 220 °C for 60 min gave the optimum tensile properties compared to other treatment temperatures. The tensile, flexural, and impact properties as well as the dimensional stability of the biocomposites were enhanced by the presence of SHS-treated PALF. The SEM analysis showed improvement in the interfacial adhesion between PLA and SHS-treated PALF. XRD analysis showed an increase in the crystallinity with the addition of SHS-PALF. The results suggest that SHS can be used as an environmentally friendly treatment method for the modification of PALF in biocomposite production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.