This paper presents a simulation of a grid-connected photovoltaic power system. A complex model of power distribution system is developed in MATLAB Simulink, then it will be simulated to determine an amount of power delivered to the grid based on irradiance and temperature. Solar irradiance data collection is conducted using a solar irradiance meter. These weather data (solar irradiances and temperatures) are transformed into signal inputs and model through a grid-tied Photovoltaic (PV) model system which consists of PV, incremental conductance Maximum Power Point Tracking (MPPT) method, DC-DC boost converter, inverter, voltage source converter (VSC) control algorithms, and grid equipment. The output variables can be related to current, voltage or power. However, tracing of the current-voltage (I-V) characteristics or power-voltage (P-V) characteristics are the vital need to grid-tied PV system operation. Changes in solar irradiance and temperature imply changes in output variables. Detailed modelling of the effect of irradiance and temperature, on the parameters of the PV module and the output parameters will be discussed. With the aid of this model, one can have a feasible idea about the solar energy generation potential at given locations. This comprehensive model is simulated using MATLAB/Simulink software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.