To improve power quality in power systems vulnerable to current disturbances and unbalanced loads, a hybrid control scheme is proposed in the present paper. A hybrid adaptive robust control strategy is devised for an SMIB power system equipped with a static VAR compensator to ensure robust transient stability and voltage regulation (SVC). High-order sliding mode control is combined with a dynamic adaptive backstepping algorithm to form the basis of this technique. To create controllers amenable to practical implementation, this method uses a high-order SMIB-SVC model and introduces dynamic constraints, in contrast to prior approaches. Improved transient and steady-state performances of the turbine steam-valve system are the goals of the dynamic backstepping controller. A Lyapunov-based adaptation law is developed to address the ubiquitous occurrence of parametric and nonparametric uncertainty in electrical power transmission systems due to the damping coefficient, unmodeled dynamics, and external disturbance. High-order sliding mode (HOSM) control is used for generator excitation and SVC devices to construct finite-time controllers. The necessary derivatives for HOSM control are calculated using high-order numerical differentiators to prevent simulation instability and convergence issues. Simulations demonstrate that the suggested method outperforms conventionally coordinated and hybrid adaptive control schemes regarding actuation efficiency and stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.