International audienceWe study the approximation of Ef(X-T) by a Monte Carlo algorithm, where X is the solution of a stochastic differential equation and f is a given function. We introduce a new variance reduction method, which can be viewed as a statistical analogue of Romberg extrapolation method. Namely, we use two Euler schemes with steps delta and delta(beta), 0 < beta < 1. This leads to an algorithm which, for a given level of the statistical error, has a complexity significantly lower than the complexity of the standard Monte Carlo method. We analyze the asymptotic error of this algorithm in the context of general (possibly degenerate) diffusions. In order to find the optimal beta (which turns out to be beta = 1/2), we establish a central limit: type theorem, based on a result of Jacod and Protter for the asymptotic distribution of the error in the Euler scheme. We test our method on various examples. In particular, we adapt it to Asian options. In this setting, we have a CLT and, as a by-product, an explicit expansion of the discretization error
This paper deals with the problem of global parameter estimation in the Cox-Ingersoll-Ross (CIR) model (X t) t≥0. This model is frequently used in finance for example to model the evolution of short-term interest rates or as a dynamic of the volatility in the Heston model. In continuity with a recent work by Ben Alaya and Kebaier [1], we establish new asymptotic results on the maximum likelihood estimator (MLE) associated to the global estimation of the drift parameters of (X t) t≥0. To do so, we need to study first the asymptotic behavior of the quadruplet (log X t , X t , t 0 X s ds, t 0 ds Xs). This allows us to obtain various and original limit theorems on our MLE, with different rates and different types of limit distributions. Our results are obtained for both cases : ergodic and nonergodic diffusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.