We demonstrate, for the first time, the synthesis of highly ordered titanium oxynitride nanotube arrays sensitized with Ag nanoparticles (Ag/TiON) as an attractive class of materials for visible-light-driven water splitting. The nanostructure topology of TiO2, TiON and Ag/TiON was investigated using FESEM and TEM. The X-ray photoelectron spectroscopy (XPS) and the energy dispersive X-ray spectroscopy (EDS) analyses confirm the formation of the oxynitride structure. Upon their use to split water photoelectrochemically under AM 1.5 G illumination (100 mW/cm2, 0.1 M KOH), the titanium oxynitride nanotube array films showed significant increase in the photocurrent (6 mA/cm2) compared to the TiO2 nanotubes counterpart (0.15 mA/cm2). Moreover, decorating the TiON nanotubes with Ag nanoparticles (13 ± 2 nm in size) resulted in exceptionally high photocurrent reaching 14 mA/cm2 at 1.0 VSCE. This enhancement in the photocurrent is related to the synergistic effects of Ag decoration, nitrogen doping, and the unique structural properties of the fabricated nanotube arrays.
Understanding the nature of interfacial defects of materials is a critical undertaking for the design of high-performance hybrid electrodes for photocatalysis applications. Theoretical and computational endeavors to achieve this have touched boundaries far ahead of their experimental counterparts. However, to achieve any industrial benefit out of such studies, experimental validation needs to be systematically undertaken. In this sense, we present herein experimental insights into the synergistic relationship between the lattice position and oxidation state of tungsten ions inside a TiO2 lattice, and the respective nature of the created defect states. Consequently, a roadmap to tune the defect states in anodically-fabricated, ultrathin-walled W-doped TiO2 nanotubes is proposed. Annealing the nanotubes in different gas streams enabled the engineering of defects in such structures, as confirmed by XRD and XPS measurements. While annealing under hydrogen stream resulted in the formation of abundant Wn+ (n < 6) ions at the interstitial sites of the TiO2 lattice, oxygen- and air-annealing induced W6+ ions at substitutional sites. EIS and Mott-Schottky analyses indicated the formation of deep-natured trap states in the hydrogen-annealed samples, and predominantly shallow donating defect states in the oxygen- and air-annealed samples. Consequently, the photocatalytic performance of the latter was significantly higher than those of the hydrogen-annealed counterparts. Upon increasing the W content, photoelectrochemical performance deteriorated due to the formation of WO3 crystallites that hindered charge transfer through the photoanode, as evident from the structural and chemical characterization. To this end, this study validates the previous theoretical predictions on the detrimental effect of interstitial W ions. In addition, it sheds light on the importance of defect states and their nature for tuning the photoelectrochemical performance of the investigated materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.