Imagers that use their own illumination can capture three-dimensional (3D) structure and reflectivity information. With photon-counting detectors, images can be acquired at extremely low photon fluxes. To suppress the Poisson noise inherent in low-flux operation, such imagers typically require hundreds of detected photons per pixel for accurate range and reflectivity determination. We introduce a low-flux imaging technique, called first-photon imaging, which is a computational imager that exploits spatial correlations found in real-world scenes and the physics of low-flux measurements. Our technique recovers 3D structure and reflectivity from the first detected photon at each pixel. We demonstrate simultaneous acquisition of sub-pulse duration range and 4-bit reflectivity information in the presence of high background noise. First-photon imaging may be of considerable value to both microscopy and remote sensing.
Capturing depth and reflectivity images at low light levels from active illumination of a scene has wide-ranging applications. Conventionally, even with detectors sensitive to individual photons, hundreds of photon detections are needed at each pixel to mitigate Poisson noise. We develop a robust method for estimating depth and reflectivity using fixed dwell time per pixel and on the order of one detected photon per pixel averaged over the scene. Our computational image formation method combines physically accurate single-photon counting statistics with exploitation of the spatial correlations present in real-world reflectivity and 3-D structure. Experiments conducted in the presence of strong background light demonstrate that our method is able to accurately recover scene depth and reflectivity, while traditional imaging methods based on maximum likelihood (ML) estimation or approximations thereof lead to noisier images. For depth, performance compares favorably to signal-independent noise removal algorithms such as median filtering or block-matching and 3-D filtering (BM3D) applied to the pixelwise ML estimate; for reflectivity, performance is similar to signal-dependent noise removal algorithms such as Poisson nonlocal sparse PCA and BM3D with variance-stabilizing transformation. Our framework increases photon efficiency 100-fold over traditional processing and also improves, somewhat, upon first-photon imaging under a total acquisition time constraint in raster-scanned operation. Thus, our new imager will be useful for rapid, low-power, and noise-tolerant active optical imaging, and its fixed dwell time will facilitate parallelization through use of a detector array.Index Terms-3-D imaging, computational imaging, convex optimization, first-photon imaging, LIDAR, low-light imaging, Poisson noise, single-photon detection, time-of-flight imaging.
We show that multi-path analysis using images from a timeof-flight (ToF)
Range acquisition systems such as light detection and ranging (LIDAR) and time-of-flight (TOF) cameras operate by measuring the time difference of arrival between a transmitted pulse and the scene reflection. We introduce the design of a range acquisition system for acquiring depth maps of piecewise-planar scenes with high spatial resolution using a single, omnidirectional, time-resolved photodetector and no scanning components. In our experiment, we reconstructed 64 × 64-pixel depth maps of scenes comprising two to four planar shapes using only 205 spatially-patterned, femtosecond illuminations of the scene. The reconstruction uses parametric signal modeling to recover a set of depths present in the scene. Then, a convex optimization that exploits sparsity of the Laplacian of the depth map of a typical scene determines correspondences between spatial positions and depths. In contrast with 2D laser scanning used in LIDAR systems and low-resolution 2D sensor arrays used in TOF cameras, our experiment demonstrates that it is possible to build a non-scanning range acquisition system with high spatial resolution using only a standard, low-cost photodetector and a spatial light modulator.
We propose a framework for simultaneous phase unwrapping and multipath interference cancellation (SPUMIC) in homodyne time-of-flight (ToF) cameras. Our multi-frequency acquisition framework is based on parametric modeling of the multipath interference phenomena. We use robust spectral estimation methods with low computational complexity to detect and estimate multipath parameters. Using simulations and analysis we demonstrate that our proposed solution is implementable in real-time on existing ToF cameras without requiring any hardware modifications.Index Terms-Time-of-flight range imaging, depth sensing, 3D camera, phase unwrapping, multipath cancellation, mixed, flying pixel, spectral estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.