IoT devices have been growing exponentially in the last few years. This growth makes them an attractive target for attackers due to their low computational power and limited security features. Attackers use IoT botnets as an instrument to perform DDoS attacks which caused major disruptions of Internet services in the last decade. While many works have tackled the task of detecting botnet attacks, only a few have considered early-stage detection of these botnets during their propagation phase. While previous approaches analyze each network packet individually to predict its maliciousness, we propose a novel deep learning model called LiMNet (Lightweight Memory Network), which uses an internal memory component to capture the behaviour of each IoT device over time. This memory incorporates both packet features and behaviour of the peer devices. With this information, LiMNet achieves almost maximum AUROC classification scores, between 98.8% and 99.7%, with a 14% improvement over state of the art. LiMNet is also lightweight, performing inference almost 8 times faster than previous approaches.
Ransomware attacks have become one of the main cyber threats to companies and individuals. In recent years, different approaches have been proposed to mitigate such attacks by analyzing ransomware behavior during the infection and post-infection phases. However, few works focused on early-stage ransomware detection. The analysis of recent ransomware has shown that they are designed to perform sensing activities to evade detection by known anti-viruses and anti-malware software. This paper proposes an early-stage ransomware detector based on a neural network model for multi-class classification. Our model achieves 80.00% accuracy on our dataset and 93.00% on another state-of-the-art dataset [11]. We show that our model performs better than the state-of-the-art approaches, especially on a challenging, large, and varied dataset we made publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.