A B S T R A C TLiver tumor segmentation from computed tomography (CT) images is a critical and challenging task. Due to the fuzziness in the liver pixel range, the neighboring organs of the liver with the same intensity, high noise and large variance of tumors. The segmentation process is necessary for the detection, identification, and measurement of objects in CT images. We perform an extensive review of the CT liver segmentation literature. Furthermore, in this paper, an improved segmentation approach based on watershed algorithm, neutrosophic sets (NS), and fast fuzzy c-mean clustering algorithm (FFCM) for CT liver tumor segmentation is proposed. To increase the contrast of the liver CT images, the intensity values are adjusted and high frequencies are removed using histogram equalization and median filter approach. It is followed by transforming the CT image to NS domain, which is described using three subsets (percentage of truth T, the percentage of indeterminacy I, and percentage of falsity F). The obtained NS image is enhanced by adaptive threshold and morphological operators to focus on liver parenchyma. The enhanced NS image passed to a watershed algorithm for post-segmentation process and liver parenchyma is extracted using the connected component algorithm. Finally, the liver tumors are segmented from the segmented liver using fast fuzzy c-mean (FFCM). A quantitative analysis is carried out to evaluate segmentation results using six different indices. The results show that the overall accuracy offered by the employed neutrosophic sets is accurate, less time consuming, less sensitive to noise and performs better on non-uniform CT images.
Abstract. In this paper, an improved segmentation approach based on Neutrosophic sets (NS) and fuzzy c-mean clustering (FCM) is proposed. An application of abdominal CT imaging has been chosen and segmentation approach has been applied to see their ability and accuracy to segment abdominal CT images. The abdominal CT image is transformed into NS domain, which is described using three subsets namely; the percentage of truth in a subset T , the percentage of indeterminacy in a subset I, and the percentage of falsity in a subset F . The entropy in NS is defined and employed to evaluate the indeterminacy. Threshold for NS image is adapted using Fuzzy C-mean algorithm. Finally, abdominal CT image is segmented and liver parenchyma is selected using connected component algorithm. The proposed approach denoted as NS-FCM and compared with FCM using Jaccard Index and Dice Coefficient. The experimental results demonstrate that the proposed approach is less sensitive to noise and performs better on nonuniform CT images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.