Fresh produce contaminated with Listeria monocytogenes has caused major listeriosis outbreaks in the last decades. Our knowledge about components of the listerial biofilms formed on fresh produce and their roles in causing foodborne illness remains incomplete. Here, we investigated, for the first time, the role of the listerial Pss exopolysaccharide (EPS) in plant surface colonization and stress tolerance. Pss is the main component of L. monocytogenes biofilms synthesized at elevated levels of the second messenger c-di-GMP. We developed a new biofilm model, whereby L. monocytogenes EGD-e and its derivatives are grown in the liquid minimal medium in the presence of pieces of wood or fresh produce. After 48-h incubation, the numbers of colony forming units of the Pss-synthesizing strain on pieces of wood, cantaloupe, celery and mixed salads were 2−12-fold higher, compared to the wild-type strain. Colonization of manmade materials, metals and plastics, was largely unaffected by the presence of Pss. The biofilms formed by the EPS-synthesizing strain on cantaloupe rind were 6−16-fold more tolerant of desiccation, which resembles conditions of whole cantaloupe storage and transportation. Further, listeria in the EPS-biofilms survived exposure to low pH, a condition encountered by bacteria on the contaminated produce during passage through the stomach, by 11−116-fold better than the wild-type strain. We surmise that L. monocytogenes strains synthesizing Pss EPS have an enormous, 102−104-fold, advantage over the non-synthesizing strains in colonizing fresh produce, surviving during storage and reaching small intestines of consumers where they may cause disease. The magnitude of the EPS effect calls for better understanding of factors inducing Pss synthesis and suggests that prevention of listerial EPS-biofilms may significantly enhance fresh produce safety.
Elevated levels of the second messenger c-di-GMP suppress virulence in diverse pathogenic bacteria, yet mechanisms are poorly characterized. In the foodborne pathogen , high c-di-GMP levels inhibit mammalian cell invasion. Here, we show that invasion is impaired because of the decreased expression levels of internalin genes whose products are involved in invasion. We further show that at high c-di-GMP levels, the expression of the entire virulence regulon is suppressed, and so is the expression of the gene encoding the master activator of the virulence regulon. Analysis of mechanisms controlling expression pointed to the transcription factor CodY as a c-di-GMP-sensitive component. In high-c-di-GMP strains, gene expression is decreased, apparently due to the lower activity of CodY, which functions as an activator of transcription. We found that listerial CodY does not bind c-di-GMP and therefore investigated whether c-di-GMP levels affect two known cofactors of listerial CodY, branched-chain amino acids and GTP. Our manipulation of branched-chain amino acid levels did not perturb the c-di-GMP effect; however, our replacement of listerial CodY with the streptococcal CodY homolog, whose activity is GTP independent, abolished the c-di-GMP effect. The results of this study suggest that elevated c-di-GMP levels decrease the activity of the coordinator of metabolism and virulence, CodY, possibly via lower GTP levels, and that decreased CodY activity suppresses virulence by the decreased expression of the PrfA virulence regulon. is a pathogen causing listeriosis, a disease responsible for the highest mortality rate among foodborne diseases. Understanding how the virulence of this pathogen is regulated is important for developing treatments to decrease the frequency of listerial infections in susceptible populations. In this study, we describe the mechanism through which elevated levels of the second messenger c-di-GMP inhibit listerial invasion in mammalian cells. Inhibition is caused by the decreased activity of the transcription factor CodY that coordinates metabolism and virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.