Wind power is one of the sustainable ways to generate renewable energy. In recent years, some countries have set renewables to meet future energy needs, with the primary goal of reducing emissions and promoting sustainable growth, primarily the use of wind and solar power. To achieve the prediction of wind power generation, several deep and machine learning models are constructed in this article as base models. These regression models are Deep neural network (DNN), k-nearest neighbor (KNN) regressor, long short-term memory (LSTM), averaging model, random forest (RF) regressor, bagging regressor, and gradient boosting (GB) regressor. In addition, data cleaning and data preprocessing were performed to the data. The dataset used in this study includes 4 features and 50530 instances. To accurately predict the wind power values, we propose in this paper a new optimization technique based on stochastic fractal search and particle swarm optimization (SFS-PSO) to optimize the parameters of LSTM network. Five evaluation criteria were utilized to estimate the efficiency of the regression models, namely, mean absolute error (MAE), Nash Sutcliffe Efficiency (NSE), mean square error (MSE), coefficient of determination (R 2 ), root mean squared error (RMSE). The experimental results illustrated that the proposed optimization of LSTM using SFS-PSO model achieved the best results with R 2 equals 99.99% in predicting the wind power values.
Parkinson’s disease (PD) has become widespread these days all over the world. PD affects the nervous system of the human and also affects a lot of human body parts that are connected via nerves. In order to make a classification for people who suffer from PD and who do not suffer from the disease, an advanced model called Bayesian Optimization-Support Vector Machine (BO-SVM) is presented in this paper for making the classification process. Bayesian Optimization (BO) is a hyperparameter tuning technique for optimizing the hyperparameters of machine learning models in order to obtain better accuracy. In this paper, BO is used to optimize the hyperparameters for six machine learning models, namely, Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR), Naive Bayes (NB), Ridge Classifier (RC), and Decision Tree (DT). The dataset used in this study consists of 23 features and 195 instances. The class label of the target feature is 1 and 0, where 1 refers to the person suffering from PD and 0 refers to the person who does not suffer from PD. Four evaluation metrics, namely, accuracy, F1-score, recall, and precision were computed to evaluate the performance of the classification models used in this paper. The performance of the six machine learning models was tested on the dataset before and after the process of hyperparameter tuning. The experimental results demonstrated that the SVM model achieved the best results when compared with other machine learning models before and after the process of hyperparameter tuning, with an accuracy of 92.3% obtained using BO.
In recent years data science has been applied in a variety of real-life applications such as human-computer interaction applications, computer gaming, mobile services, and emotion evaluation. Among the wide range of applications, speech emotion recognition (SER) is also an emerging and challenging research topic. For SER, recent studies used handcrafted features that provide the best results but failed to provide accuracy while applied in complex scenarios. Later, deep learning techniques were used for SER that automatically detect features from speech signals. Deep learning-based SER techniques overcome the issues of accuracy, yet there are still significant gaps in the reported methods. Studies using lightweight CNN failed to learn optimal features from composite acoustic signals. This study proposed a novel SER model to overcome the limitations mentioned earlier in this study. We focused on Arabic vocal emotions in particular because they received relatively little attention in research. The proposed model performs data augmentation before feature extraction. The 273 derived features were fed as input to the transformer model for emotion recognition. This model is applied to four datasets named BAVED, EMO-DB, SAVEE, and EMOVO. The experimental findings demonstrated the robust performance of the proposed model compared to existing techniques. The proposed SER model achieved 95.2%, 93.4%, 85.1%, and 91.7% accuracy on BAVED, EMO-DB, SAVEE, and EMOVO datasets respectively. The highest accuracy was obtained using BAVED dataset, indicating that the proposed model is well suited to Arabic vocal emotions.
Forecasting is defined as the process of estimating the change in uncertain situations. One of the most vital aspects of many applications is temperature forecasting. Using the Daily Delhi Climate Dataset, we utilize time series forecasting techniques to examine the predictability of temperature. In this paper, a hybrid forecasting model based on the combination of Wavelet Decomposition (WD) and Seasonal Auto-Regressive Integrated Moving Average with Exogenous Variables (SARIMAX) was created to accomplish accurate forecasting for the temperature in Delhi, India. The range of the dataset is from 2013 to 2017. It consists of 1462 instances and four features, and 80% of the data is used for training and 20% for testing. First, the WD decomposes the non-stationary data time series into multi-dimensional components. That can reduce the original time series’ volatility and increase its predictability and stability. After that, the multi-dimensional components are used as inputs for the SARIMAX model to forecast the temperature in Delhi City. The SARIMAX model employed in this work has the following order: (4, 0, 1). (4, 0, [1], 12). The experimental results demonstrated that WD-SARIMAX performs better than other recent models for forecasting the temperature in Delhi city. The Mean Square Error (MSE), Mean Absolute Error (MAE), Median Absolute Error (MedAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and determination coefficient (R2) of the proposed WD-SARIMAX model are 2.8, 1.13, 0.76, 1.67, 4.9, and 0.91, respectively. Furthermore, the WD-SARIMAX model utilized the proposed to forecast the temperature in Delhi over the next eight years, from 2017 to 2025.
This paper presents optimized linear regression with multivariate adaptive regression splines (LR-MARS) for predicting crude oil demand in Saudi Arabia based on social spider optimization (SSO) algorithm. The SSO algorithm is applied to optimize LR-MARS performance by fine-tuning its hyperparameters. The proposed prediction model was trained and tested using historical oil data gathered from different sources. The results suggest that the demand for crude oil in Saudi Arabia will continue to increase during the forecast period (1980–2015). A number of predicting accuracy metrics including Mean Absolute Error (MAE), Median Absolute Error (MedAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and coefficient of determination ( R 2 ) were used to examine and verify the predicting performance for various models. Analysis of variance (ANOVA) was also applied to reveal the predicting result of the crude oil demand in Saudi Arabia and also to compare the actual test data and predict results between different predicting models. The experimental results show that optimized LR-MARS model performs better than other models in predicting the crude oil demand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.