Viral hepatitis B (HBV) and hepatitis C (HCV) infections remain the most common risk factors for the development of hepatocellular carcinoma (HCC), and their heterogeneous distribution influences the global prevalence of this common type of liver cancer. Typical hepatitis infection elicits various immune responses within the liver microenvironment, and viral persistence induces chronic liver inflammation and carcinogenesis. HBV is directly mutagenic but can also cause low-grade liver inflammation characterized by episodes of intermittent high-grade liver inflammation, liver fibrosis, and cirrhosis, which can progress to decompensated liver disease and HCC. Equally, the absence of key innate and adaptive immune responses in chronic HCV infection dampens viral eradication and induces an exhausted and immunosuppressive liver niche that favors HCC development and progression. The objectives of this review are to (i) discuss the epidemiological pattern of HBV and HCV infections, (ii) understand the host immune response to acute and chronic viral hepatitis, and (iii) explore the link between this diseased immune environment and the development and progression of HCC in preclinical models and HCC patients.
Liver ischemia-reperfusion injury (IRI) is a pathophysiological insult that often occurs during liver surgery. Blackberry leaves are known for their anti-inflammatory and antioxidant activities. Aims: To achieve site-specific delivery of blackberry leaves extract (BBE) loaded AgNPs to the hepatocyte in IRI and to verify possible molecular mechanisms. Methods: IRI was induced in male Wister rats. Liver injury, hepatic histology, oxidative stress markers, hepatic expression of apoptosis-related proteins were evaluated. Non-targeted metabolomics for chemical characterization of blackberry leaves extract was performed. Key findings: Pre-treatment with BBE protected against the deterioration caused by I/R, depicted by a significant improvement of liver functions and structure, as well as reduction of oxidative stress with a concomitant increase in antioxidants. Additionally, BBE promoted phosphorylation of antiapoptotic proteins; PI3K, Akt and mTOR, while apoptotic proteins; Bax, Casp-9 and cleaved Casp-3 expressions were decreased. LC-HRMS-based metabolomics identified a range of metabolites, mainly flavonoids and anthocyanins. Upon comprehensive virtual screening and molecular dynamics simulation, the major annotated anthocyanins, cyanidin and pelargonidin glucosides, were suggested to act as PLA2 inhibitors. Significance: BBE can ameliorate hepatic IRI augmented by BBE-AgNPs nano-formulation via suppressing, oxidative stress and apoptosis as well as stimulation of PI3K/Akt/mTOR signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.