This study evaluated the topical effect of Lepidium sativum lyophilized seed extract (LSLE) towards Sustanon-induced alopecia in male adult Wistar albino rats in vivo, compared to minoxidil topical reference standard drug (MRD). LC–MS/MS together with molecular networking was used to profile the metabolites of LSLE. LSLE treated group revealed significant changes in alopecia related biomarkers, perturbation of androgenic markers; decline in testosterone level and elevation in 5α-reductase (5-AR); decline in the cholesterol level. On the other hand, LSLE treated group showed improvement in vascular markers; CTGF, FGF and VEGF. Groups treated topically with minoxidil and LSLE showed significant improvement in hair length. LC–MS/MS profile of LSLE tentatively identified 17 constituents: mainly glucosinolates, flavonoid glycosides, alkaloids and phenolic acids. The results point to the potential role of LSLE in the treatment of alopecia through decreasing 5(alpha)-dihydrotestosterone levels. Molecular docking was attempted to evaluate the probable binding mode of identified compounds to androgen receptor (PDB code: 4K7A).
A crucial target in drug research is magnifying efficacy and decreasing toxicity. Therefore, using natural active constituents as precursors will enhance both safety and biological activities. Despite having many pharmacological activities, caffeic and ferulic acids showed limited clinical usage due to their poor bioavailability and fast elimination. Therefore, semisynthetic compounds from these two acids were prepared and screened as anticancer agents. In this study, CA and FA showed very potent anticancer activity against Caco-2 cells. Consequently, eighteen derivatives were tested against the same cell line. Four potent candidates were selected for determination of the selectivity index, where compound 10 revealed a high safety margin. Compound 10 represented a new scaffold and showed significant cytotoxic activity against Caco-2. Cell-cycle analysis and evaluation of apoptosis showed that derivatives 10, 7, 11, 15 and 14 showed the highest proportion of cells in a late apoptotic stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.