Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
Activating transcription factor (ATF)/cAMP-response element (CRE)-binding (CREB) proteins induce the CRE-mediated gene transcription depending on the cAMP stimulation. cAMPdependent signaling oscillates in a circadian manner, which in turn also sustains core oscillation machinery of the circadian clock. Here, we show that among the ATF/CREB family proteins, ATF4 is essential for the circadian expression of the Period2 (Per2) gene, a key component of the circadian clock. Transcription of the Atf4 gene was regulated by core components of the circadian clock, and its expression exhibited circadian oscillation in mouse tissues as well as embryonic fibroblasts. ATF4 bound to the CRE of the Per2 promoter in a circadian time-dependent manner and periodically activated the transcription of the Per2 gene. Consequently, the oscillation of the Per2 expression was attenuated in embryonic cells prepared from Atf4-null mice. Furthermore, the loss of ATF4 also disrupted the rhythms in the expression of other clock genes. These results suggest that ATF4 is a component responsible for sustaining circadian oscillation of CRE-mediated gene expression and also constitute a molecular link connecting cAMP-dependent signaling to the circadian clock.Genetic and molecular approaches have identified a basic mechanism of the circadian oscillator that is governed by interconnected transcriptional and translational feedback loops (1, 2). Gene products of Clock and Bmal1 (also known as Arntl) form a heterodimer that activates the transcription of Period (Per) and Cryptochrome (Cry) genes. Once PER and CRY proteins have reached a critical concentration, they attenuate CLOCK/BMAL1-mediated transactivation, thus generating circadian oscillation in their own transcription. Rev-erb␣ (known as Nrd1d1) is also activated by CLOCK/BMAL1 and transrepressed by PER and CRY, resulting in circadian oscillation in the expression of Rev-erb␣. In turn, REV-ERB␣ periodically represses Bmal1 transcription, thereby interconnecting the positive and negative loops (3). Like the mechanism of Reverb␣ transcription, clock genes comprising the core oscillation loop transduce downstream events by regulating the expression of clock-controlled output genes (4). cAMP-dependent signaling is involved in the circadian output pathways, but the cAMP signaling subsequently sustains the core oscillation loops in the suprachiasmatic nucleus (SCN), 3 the center of the mammalian circadian clock (5, 6). However, the regulation mechanism of cAMP to sustain the circadian oscillator remains to be elucidated.The intracellular accumulation of cAMP induces CRE-mediated gene expression via ATF/CREB protein activation (7). ATF/CREB proteins belong to the bZIP transcription factor superfamily, and they are characterized by a conserved domain including highly charged basic amino acids that are required for DNA recognition at the TGACGT(C/A)(G/A) sequence (8). Although the phosphorylated states of CREB in the SCN vary in a circadian manner (5), the functional importance of the transcriptional...
Despite its broad-spectrum antifungal properties, voriconazole has many side effects when administered systemically. The aim of this work was to develop an ethosomal topical delivery system for voriconazole and test its potential to enhance the antifungal properties and skin delivery of the drug. Voriconazole was encapsulated into various ethosomal preparations and the effect of phospholipid and ethanol concentrations on the ethosomes properties were evaluated. The ethosomes were evaluated for drug encapsulation efficiency, particle size and morphology and antifungal efficacy. Drug permeability and deposition were tested in rat abdominal skin. Drug encapsulation efficiency of up to 46% was obtained and it increased with increasing the phospholipid concentration, whereas the opposite effect was observed for the ethanol concentration. The ethosomes had a size of 420-600 nm and negative zeta potential. The particle size of the ethosomes increased by increasing their ethanol content. The ethosomes achieved similar inhibition zones against Aspergillus flavus at a 2-fold lower drug concentration compared with drug solution in dimethyl sulfoxide. The ex vivo drug permeability through rat abdominal skin was ∼6-fold higher for the ethosomes compared with the drug hydroalcoholic solution. Similarly, the amount of drug deposited in the skin was higher for the ethosomes and was dependent on the ethanol concentration of the ethosomes. These results confirm that voriconazole ethosomal preparations are promising topical delivery systems that can enhance the drug antifungal efficacy and improve its skin delivery.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.