Discrete dislocation dynamics simulations were performed to investigate the dislocation microstructure evolution and cyclic hardening during the early stages of fatigue loading in Nickel single crystals. The effects of the crystal size and initial dislocation densities on both the mechanical response and the evolution of dislocation microstructure were quantified. Crystals having an initial dislocation density of 10 12 m −2 and diameter less than 2.0 μm do not show any dislocation density multiplication or cyclic hardening. In contrast, crystals having the same initial dislocation density and diameters larger than 2.0 μm show a significant dislocation density accumulation in the form of dislocation cell-like structures, even after only a few number of loading cycles. This dislocation density accumulation was also accompanied by considerable cyclic hardening. The dislocation cell size and its wall thickness increase with increasing crystal size. With increasing dislocation density the critical crystal size, at which dislocation cell-structures form, decreases. The information theoretic entropy is utilized as a metric to quantify the extent of dislocation patterning and the formation and evolution of dislocation cell structures over time. Cross-slip was found to play a dominant role in the dislocation cell-structure formation. Further insights on the mechanisms contributing to the observed behavior are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.