Photodynamic therapy (PDT) is a promising cancer treatment. PDT uses the affinity of photosensitizers to be selectively retained in malignant tumors. When tumors, pretreated with the photosensitizer, are irradiated with visible light, a photochemical reaction occurs and tumor cells are destroyed. Oxygen molecules in the metastable singlet delta state O2(1Delta) are believed to be the species that destroys cancerous cells during PDT. Monitoring singlet oxygen produced by PDT may lead to more precise and effective PDT treatments. Our approach uses a pulsed diode laser-based monitor with optical fibers and a fast data acquisition system to monitor singlet oxygen during PDT. We present results of in vitro singlet oxygen detection in solutions and in a rat prostate cancer cell line as well as PDT mechanism modeling.
Laser interstitial thermotherapy (LITT) is a minimally-invasive laser hyperthermia procedure for the treatment of localized tumours. Real-time monitoring of LITT is essential to control the extent of tumour destruction and ensure safe and effective treatments. The feasibility of using high-resolution digital x-ray mammography to monitor LITT of breast cancer was evaluated. Tissue phantoms including polyacrylamide hydrogel and cadaver porcine tissue were heated using a 980 nm diode laser delivered through optical fibres with diffusing tips. Digital images of the tissue phantoms were recorded with a high-resolution digital stereotactic breast biopsy system during heating. The recorded images were processed and analysed to detect heat-induced changes. No changes were detected during heating of the hydrogel. Pixel-by-pixel subtraction of the initial image from images taken during laser heating shows observable thermally-induced changes around the fibre during laser irradiation that correlate with the thermal denaturation zone observed by gross anatomy. These experiments demonstrate that high-resolution digital x-ray mammography can be used to detect heat-induced tissue changes during experimental LITT in fibro-fatty tissue.
Monitoring singlet molecular oxygen ( 1 O 2 ) produced by photodynamic therapy (PDT) can lead more precise and effective cancer treatment. Physical Sciences Inc. (PSI) has developed a singlet oxygen monitor based on a pulsed diode laser technology. In this paper, we present results of singlet oxygen detection in the solution phase and in a rat prostate cancer cell line, as well as PDT mechanism modeling. We describe an improved detection approach for singlet oxygen monitoring that employs a fiber-coupled optical set-up and fast data acquisition system.
A therapeutic procedure to treat small, surface breast tumours up to 10 mm in radius plus a 5 mm margin of healthy, surrounding tissue using laser interstitial thermotherapy (LITT) is currently being investigated. The purpose of this study is to analyse and model the thermal and coagulative response of ex vivo fibro-fatty tissue, a model for breast tissue, during experimental laser interstitial thermotherapy at 980 nm. Laser radiation at 980 nm was delivered interstitially through a diffusing tip optical fibre inserted into a fibro-fatty tissue model to produce controlled heating at powers ranging from 3.2 to 8.0 W. Tissue temperature was measured with thermocouples placed at 15 positions around the fibre. The induced coagulation zone was measured on gross anatomical sections. Thermal analysis indicates that a finite sum of exponential functions is an approximate solution to the heat conduction equation that more accurately predicts the time-temperature dependence in tissue prior to carbonization (T < 100 degrees C) during LITT than the traditional model using a single exponential function. Analysis of the ellipsoid coagulation volume induced in tissue indicates that the 980 nm wavelength does not penetrate deep enough in fibro-fatty tissue to produce a desired 30 mm diameter (14.1 x 10(3) mm3) coagulation volume without unwanted tissue liquefaction and carbonization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.