We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional (3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedly during eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with the absence of condensin II subunits. Moreover, condensin II depletion converts the architecture of the human genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state, centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physical model in which lengthwise compaction of chromosomes by condensin II during mitosis determines chromosome-scale genome architecture, with effects that are retained during the subsequent interphase. This mechanism likely has been conserved since the last common ancestor of all eukaryotes.
The X shape of chromosomes is one of the iconic images in biology. Cohesin actually connects the sister chromatids along their entire length, from S phase until mitosis. Then, cohesin's antagonist Wapl allows the separation of chromosome arms by opening a DNA exit gate in cohesin rings. Centromeres are protected against this removal activity, resulting in the X shape of mitotic chromosomes. The destruction of the remaining centromeric cohesin by Separase triggers chromosome segregation. We review the two-phase regulation of cohesin removal and discuss how this affects chromosome alignment and decatenation in mitosis and cohesin reloading in the next cell cycle.
SummaryCohesin stably holds together the sister chromatids from S phase until mitosis. To do so, cohesin must be protected against its cellular antagonist Wapl. Eco1 acetylates cohesin’s Smc3 subunit, which locks together the sister DNAs. We used yeast genetics to dissect how Wapl drives cohesin from chromatin and identified mutants of cohesin that are impaired in ATPase activity but remarkably confer robust cohesion that bypasses the need for the cohesin protectors Eco1 in yeast and Sororin in human cells. We uncover a functional asymmetry within the heart of cohesin’s highly conserved ABC-like ATPase machinery and find that both ATPase sites contribute to DNA loading, whereas DNA release is controlled specifically by one site. We propose that Smc3 acetylation locks cohesin rings around the sister chromatids by counteracting an activity associated with one of cohesin’s two ATPase sites.
The classical X shape of mitotic human chromosomes is the consequence of two distinct waves of cohesin removal. First, during prophase and prometaphase, the bulk of cohesin is driven from chromosome arms by the cohesin antagonist WAPL. This arm-specific cohesin removal is referred to as the prophase pathway [1-4]. The subsequent cleavage of the remaining centromeric cohesin by Separase is known to be the trigger for anaphase onset [5-7]. Remarkably the biological purpose of the prophase pathway is unknown. We find that this pathway is essential for two key mitotic processes. First, it is important to focus Aurora B at centromeres to allow efficient correction of erroneous microtubule-kinetochore attachments. In addition, it is required to facilitate the timely decatenation of sister chromatids. As a consequence, WAPL-depleted cells undergo anaphase with segregation errors, including both lagging chromosomes and catenanes, resulting in micronuclei and DNA damage. Stable WAPL depletion arrests cells in a p53-dependent manner but causes p53-deficient cells to become highly aneuploid. Our data show that the WAPL-dependent prophase pathway is essential for proper chromosome segregation and is crucial to maintain genomic integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.