The new ligands Na[(p-IC6H4)B(3-Rpz)3] (R = H, Me) have been prepared by converting I2C6H4 to IC6H4SiMe3 with Li(t)Bu and SiMe3Cl, and then to IC6H4BBr2 with BBr3 and subsequent reaction with 3 equiv of (un)substituted pyrazole and 1 equiv of NaO(t)Bu. These new ligands react with FeBr2 to give either purple, low-spin Fe[(p-IC6H4)B(pz)3]2 or colorless, high-spin Fe[(p-IC6H4)B(3-Mepz)3]2. Depending upon the crystallization conditions, Fe[(p-IC6H4)B(3-Mepz)3]2 can exist both as two polymorphs and as a methylene chloride solvate. An examination of these polymorphs by variable-temperature X-ray crystallography, magnetic susceptibility, and Mossbauer spectroscopy has revealed different electronic spin-state crossover properties for each polymorph and yields insight into the influence of crystal packing, independent of other electronic perturbations, on the spin-state crossover. The first polymorph of Fe[(p-IC6H4)B(3-Mepz)3]2 has a highly organized three-dimensional supramolecular structure and does not undergo a spin-state crossover upon cooling to 4 K. The second polymorph of Fe[(p-IC6H4)B(3-Mepz)3]2 has a stacked two-dimensional supramolecular structure, a structure that is clearly less well organized than that of the first polymorph, and undergoes an abrupt iron(II) spin-state crossover from high spin to low spin upon cooling below ca. 130 K. The crystal structure of the methylene chloride solvate of Fe[(p-IC6H4)B(3-Mepz)3]2 has a similar stacked two-dimensional supramolecular structure, but the crystals readily lose the solvate. The resulting desolvate undergoes a gradual spin-state crossover to the low-spin state upon cooling below ca. 235 K. It is clear from a comparison of the structures that the long-range solid-state organization of the molecules, which is controlled by noncovalent supramolecular interactions, has a strong impact upon the spin-state crossover, with the more highly organized structures having lower spin-crossover temperatures and more abrupt spin-crossover behavior.
Cerium oxide solid samples were prepared via precipitation from aqueous solution of hydrous cerium-(III) nitrate in the presence of different percentages of hydrogen peroxide (H 2 O 2 ) as model corrosion inhibiting coatings materials for aluminum alloys. X-ray absorption spectroscopy at the Ce L III -edge was applied for the characterization of crystalline anhydrous CeO 2 , nanocrystalline hydrous CeO 2 , nanocrystalline CeO 2 sample I precipitated in the presence of H 2 O 2 , and an amorphous CeO 2 sample II precipitated at a higher H 2 O 2 concentration. An analysis by X-ray absorption near-edge structure (XANES) for cerium oxides did not indicate a broad variation in cerium valence state in the precipitated samples as compared to anhydrous CeO 2 . Furthermore, XANES analysis revealed a decrease in the intensity of the white line peaks for the precipitated samples relative to those in anhydrous CeO 2 . The EXAFS spectra of the oxides showed that H 2 O 2 reduced the precipitate's particle diameter and bulk crystallinity. Growth in the coordination number of the first, Ce-O, shell was observed with an increased bond distance R Ce-O in hydrous and precipitated CeO 2 samples. However, the coordination numbers of the second, Ce-Ce, and third, Ce-O, shells were reduced in comparison with anhydrous CeO 2 . Increasing concentration of H 2 O 2 during alkaline precipitation of cerium oxides caused increased hydration, corresponding to a reduced outer-shell coordination number and reduced bulk crystallinity but no corresponding change in the cerium valence state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.