The design of cryptographic hardware that supports multiple cryptographic primitives is common in literature. In this work, a new design is presented consisting of a multi-purpose cryptographic system featuring both 128-bit pipelined AES-CORE (Advanced Encryption Standard) for high-speed symmetric encryption and a Keccak hash core on a low-cost FPGA. The KECCAK-CORE’s security and performance parameters are tunable in the sense that capacity, bitrate, and the number of rounds can be user-defined. Such flexibility enables the core to suit a large range of security requirements. The structure of Keccak’s sponge construction is exploited to enable different modes of operation. An example application outlined in this work is Pseudo Random Number Generation (PRNG). With few adjustments, the KECCAK-CORE was also operated as a post-processing unit for True Random Number Generation (TRNG) that uses the analog Lorenz chaotic circuit as a physical entropy source. The multi-purpose design was implemented in VHDL targeting an IntelFPGA Cyclone-V FPGA. For AES symmetric encryption, a maximum throughput of 31.1Gbps was achieved and a logic usage of 25146LEs (23% of the FPGA) in the case of the pipelined variant of AES-CORE. For the KECCAK-CORE, maximum throughput figures of 5.81, 8.4, and 11Gbps were achieved for the three SHA-3 variants 512, 384, and 256-bit respectively, with an area usage of 8947LEs (8%). The system as a whole occupies an area of 26909LEs (26%). The random sequences generated by the system operating in PRNG and TRNG post- processing modes successfully passed the National Institute of Standards and Technology (NIST) statistical test suite (NIST SP 800-22). The information entropy analysis performed on the post-processed TRNG sequences indicates an average of 0.935.
The testing approach is facing many difficulties regarding the actual implementations in the modern smart power grids. One of these challenges is the testing of hardware devices such as protective relays, PMUs, and smart meters before its final deployment to the power grid. One way to overcome this is the real-time simulation of power grid. The hardware-under-test (HuT) is plugged to a real-time simulator via signal conditioning circuit (SCC). SCC is an interface circuit involving power amplifier and measurement sub-circuit between the real-time power grid simulator and the HuT. In this chapter, some advanced developed techniques and approaches will be presented.
Recently, FPGAs have been integrated into HPC clusters in order to boost computational performance while reducing power consumption. However, performance and effective logic utilisation is usually limited by the number of inter-device pins and most importantly the interconnection architecture. Mesh interconnection in particular suffers from the pin-limitation problem. The concept of Virtual Wires has been proposed to reduce the impact of this problem by using time-multiplexed physical wires. This paper demonstrates a simple yet effective technique to further reduce the number of the physical wires required by the Virtual Wires and the Mesh architectures by an average of 18% over the original routing algorithms. This technique can be equally applied to exploit the topological properties of any mesh-based architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.