Outbreaks of Dengue impose a heavy economic burden on developing countries in terms of vector control and human morbidity. Effective vaccines against all four serotypes of Dengue are in development, but population replacement with transgenic vectors unable to transmit the virus might ultimately prove to be an effective approach to disease suppression, or even eradication. A key element of the refractory transgenic vector approach is the development of transgenes that effectively prohibit viral transmission. In this report we test the effectiveness of several hammerhead ribozymes for suppressing DENV in lentivirus-transduced mosquito cells in an attempt to mimic the transgenic use of these effector molecules in mosquitoes. A lentivirus vector that expresses these ribozymes as a fusion RNA molecule using an Ae. aegypti tRNA val promoter and terminating with a 60A tail insures optimal expression, localization, and activity of the hammerhead ribozyme against the DENV genome. Among the 14 hammerhead ribozymes we designed to attack the DENV-2 NGC genome, several appear to be relatively effective in reducing virus production from transduced cells by as much as 2 logs. Among the sequences targeted are 10 that are conserved among all DENV serotype 2 strains. Our results confirm that hammerhead ribozymes can be effective in suppressing DENV in a transgenic approach, and provide an alternative or supplementary approach to proposed siRNA strategies for DENV suppression in transgenic mosquitoes.
The potato tuber moth, Phthorimaea operculella (Zeller), in tropical and subtropical countries, is the most destructive pest of potato, Solanum tuberosum L. The larvae attack foliage and tubers in the field and in storage. The purpose of this study was to evaluate the efficacy of a Bt-cry5 transgene to control the potato tuber moth in tuber tissues. Tuber bioassays using stored (11-12 mo old) and newly harvested tubers of Bt-cry5-Lemhi Russet and Bt-cry5-Atlantic potato lines showed up to 100% mortality of 1st instars. Mortality was lowest in the newly harvested tubers of Bt-cry5-Atlantic lines (47.1-67.6%). Potato tuber moth mortality was 100% in the Bt-cry5-Spunta lines that were transformed with Bt-cry5 gene controlled by the CaMV 35S promoter (pBIML5 vector) and in 2 of 3 lines transformed with Bt-cry5 gene controlled by the Gelvin super promoter (pBIML1 vector). The transgenic Spunta lines expressing Bt-cry5 controlled by the patatin promoter (pBMIL2 vector) showed the lowest tuber moth mortality (25.6 and 31.1%). The Bt-cry5 transgenic lines with high tuber expression of B. thuringiensis have value in an integrated pest management system to control potato tuber moth.
Background: We constructed and characterized several new piggyBac vectors to provide transposition of constitutively-or inducibly-expressible heterologous gene pairs. The dual constitutive control element consists of back-to-back copies of a baculovirus immediate early (ie1) promoter separated by a baculovirus enhancer (hr5). The dual inducible control element consists of back-to-back copies of a minimal cytomegalovirus (CMV min ) promoter separated by a synthetic operator (TetO7), which drives transcription in the presence of a mutant transcriptional repressor plus tetracycline.
Chitin is a major component of insect exoskeleton, tracheal system and gut where it is synthesized by chitin synthase (CHS) enzymes. In this paper, we report the isolation and RNAi of chitin synthase A (PhoCHSA) from the potato tuber moth Phthorimaea operculella. The full-length cDNA of PhoCHSA is 5,627 bp with 4,689 bp open reading frame coding for 1,563 amino acids. Structural analysis of conceptual amino acid translation showed three distinct regions found in all known insect CHS proteins; N-terminus region having 9 transmembrane helices, middle catalytic region containing several conserved domains identified in insect CHS enzymes, and C-terminus region containing seven transmembrane spans. Phylogenetic analysis showed that PhoCHSA protein clustered with CHSA enzymes identified from insects from different insect orders. RNAi targeting three different regions of the gene showed different efficacy against potato tuber moth larvae and dsRNA targeting the 5′ region has the highest efficacy. Results were verified by qRT-PCR which showed that dsRNA targeting the 5′ region caused the highest reduction in PhoCHSA mRNA level. Our results show the importance of selecting the RNAi target region and that chitin synthase A can be a suitable RNAi target for the potato tuber moth control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.