Customer churn prediction recently is one of the vital issues that confronts diverse business industries to sustain the customers base and profits. On the other hand, data scientists employ gigantic customer data to automate the data modelling process to offer these models as a generally portable service. This research has two main contributions: deep learning customer churn prediction model and smart evaluation prediction model service. So, this service harnesses any customer data to automate building, evaluation, and deployment of the churn prediction model. The research consists of three main parts. Firstly, it illustrates the dataset labelling which annotates customers data into churn or non-churn. Secondly, the deep learning churn prediction framework using convolutional neural network (CNN) algorithm. Finally, a case study is presented to show how churn prediction service is automatically trained and generated based on real customer data, where CNN parameters are adapted to achieve the most reliable performance in line with customers' behavior. The applied case study achieves accuracy 0.77, area under the curve (AUC) 0.84 and f1 score 0.83.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.