BackgroundProtein–protein interaction networks are receiving increased attention due to their importance in understanding life at the cellular level. A major challenge in systems biology is to understand the modular structure of such biological networks. Although clustering techniques have been proposed for clustering protein–protein interaction networks, those techniques suffer from some drawbacks. The application of earlier clustering techniques to protein–protein interaction networks in order to predict protein complexes within the networks does not yield good results due to the small-world and power-law properties of these networks.ResultsIn this paper, we construct a new clustering algorithm for predicting protein complexes through the use of genetic algorithms. We design an objective function for exclusive clustering and overlapping clustering. We assess the quality of our proposed clustering algorithm using two gold-standard data sets.ConclusionsOur algorithm can identify protein complexes that are significantly enriched in the gold-standard data sets. Furthermore, our method surpasses three competing methods: MCL, ClusterOne, and MCODE in terms of the quality of the predicted complexes. The source code and accompanying examples are freely available at http://faculty.kfupm.edu.sa/ics/eramadan/GACluster.zip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.