The immediate and quick spread of the coronavirus has become a life-threatening disease around the globe. The widespread illness has dramatically changed almost all sectors, moving from offline to online, resulting in a new normal lifestyle for people. The impact of coronavirus is tremendous in the healthcare sector, which has experienced a decline in the first quarter of 2020. This pandemic has created an urge to use computer-aided diagnosis techniques for classifying the Covid-19 dataset to reduce the burden of clinical results. The current situation motivated me to choose correlationbased development called correlation-based grey wolf optimizer to perform accurate classification. A proposed multistage model helps to identify Covid from Computed Tomography (CT) scan image. The first process uses a convolutional neural network (CNN) for extracting the feature from the CT scans. The Pearson coefficient filter method is applied to remove redundant and irrelevant features. Finally, the Grey wolf optimizer is used to choose optimal features. Experimental analysis proves that this determines the optimal characteristics to detect the deadly disease. The proposed model's accuracy is 14% higher than the krill herd and bacterial foraging optimization for severe accurate respiratory syndrome image (SARS-CoV-2 CT) dataset. The COVID CT image dataset is 22% higher than the existing krill herd and bacterial foraging optimization techniques. The proposed techniques help to increase the classification accuracy of the algorithm in most cases, which marks the stability of the stated result. Comparative analysis reveals that the proposed classification technique to predict COVID-19 with maximum accuracy of 98% outperforms other competitive approaches.
In this current century, most industries are moving towards automation, where human intervention is dramatically reduced. This revolution leads to industrial revolution 4.0, which uses the Internet of Things (IoT) and wireless sensor networks (WSN). With its associated applications, this IoT device is used to compute the received WSN data from devices and transfer it to remote locations for assistance. In general, WSNs, the gateways are a long distance from the base station (BS) and are communicated through the gateways nearer to the BS. At the gateway, which is closer to the BS, energy drains faster because of the heavy load, which leads to energy issues around the BS. Since the sensors are battery-operated, either replacement or recharging of those sensor node batteries is not possible after it is deployed to their corresponding areas. In that situation, energy plays a vital role in sensor survival. Concerning reducing the network energy consumption and increasing the network lifetime, this paper proposed an efficient cluster head selection using Improved Social spider Optimization with a Rough Set (ISSRS) and routing path selection to reduce the network load using the Improved Grey wolf optimization (IGWO) approach. (i) Using ISSRS, the initial clusters are formed with the local nodes, and the cluster head is chosen. (ii) Load balancing through routing path selection using IGWO. The simulation results prove that the proposed optimization-based approaches efficiently reduce the energy through load balancing compared to existing systems in terms of energy efficiency, packet delivery ratio, network throughput, and packet loss percentage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.